

DoD Environmental Planning and Conservation Webinar Series

Building Better Bat Boxes: Recommendations for Artificial Roost Design for At-Risk Bats Patrick Wolff and Joy O'Keefe May 29, 2024

Please mute your phones

Audio Dial-In: 410-874-6749 Participant Code: 235 093 958#

www.denix.osd.mil/nr/ Twitter: @DoDNatRes

Thanks to:

- Bat boxes are surrogate habitat for cavity and crevice dwelling bats
- Bat box users like warm roosts

Federally endangered Indiana bats (*Myotis sodalis*) in tree and bat box

Endless options available to build or buy

Lack of data to guide design choice

Lack of data to guide design choice

Advice on bat box color is based solely on air temperature

Bat house paint color recommendations are based on the average daily high temperatures in July.

Zone 1 (blue areas) less than 85° = Black paint color Zone 2 (green areas) 85°-95° = Dark gray paint color Zone 3 (yellow areas) 95°-100° = Medium gray paint color Zone 4 (light pink areas) 100°+ = Light gray paint color

Guide to Bat House Color Selection Based on Temperature Zones

"If in doubt, go with a darker color"

If you build it, will they come?

If you build it, will they come?

- Maybe...
- Indiana (Whitaker et al. 2006)
 - >3,000 artificial roosts deployed for Indiana bats (*Myotis sodalis*)
 - After 10 years, only 6 roosts regularly used
- Arizona (Mering and Chambers 2012)
 - <u>>400 days</u> between installation and colonization

Can we accelerate time to colonize artificial roosts?

- Acoustic lures can increase capture rates in mist-nets
 - Loeb and Britzke (2010)
 - Quackenbush et al. (2016)
 - Samoray et al. (2019)
 - Braun de Torrez et al. (2017)

Can we accelerate time to colonize artificial roosts?

- Acoustic lures can increase capture rates in mist-nets
 - Loeb and Britzke (2010)
 - Quackenbush et al. (2016)
 - Samoray et al. (2019)
 - Braun de Torrez et al. (2017)

Florida bonneted bat *Eumops floridanus*

Objectives

Objective 1. Evaluate acoustic lures for attracting bats to colonize boxes

Bat box use

<u>2021</u>

• No bats in boxes

Bat box use

- One Florida bonneted bat moved in 15 months after deployment
 - Joined by 1-2 additional FBB, then harem

Bat box use

- One Florida bonneted bat moved in 15 months after deployment
 - Joined by 1-2 additional FBB, then harem
- Evening bat (*Nycticeius humeralis*) maternity colony ~100 bats
- Mexican free-tailed bat (*Tadarida* brasiliensis) occasional use in small numbers

No effect of acoustic lure on Florida bonneted bat activity

Crawford et al., in prep.

Conclusions

- No clear benefit of acoustic lures for attracting bats to roosts or increasing bat activity
 - Technology requires frequent attention/maintenance
 - Further validation needed before adoption
 - More targeted use during critical periods could elicit positive response
 - Determine call types that may be most effective

Objective 2. Evaluate suitability of bat box designs for housing at-risk bats

Temperature monitoring

- April September 2021 and 2022
- iButton temperature sensors on lath

Evaluation criteria

Frequency of overheating events (T_{roost} ≥40°C)

Retention of warm temperatures throughout the night

Conclusions

- Improve thermal performance by incorporating heat storage materials into box design
 - Buffer extremely hot temperatures during the day and cold temperatures at night
 - Retain heat longer into the night

Objective 3. Measure effect of paint <u>color</u> on box temperatures

Three-chamber boxes along a black-white color gradient

Study Site: Bondville, IL

- Adjacent to pro weather station
- No cover from the sun
- June to November 2021
- Bats excluded

Daytime maximum temperature differential (Max T_{roost} – Max T_{ambient})

Darker paint color warms boxes on sunny days

Probability of overheating on sunny days (T_{roost} ≥40°C)

Retention of warm temperatures throughout the night

Conclusions

- Paint color matters on sunny days
- Boxes perform similarly and are likely to overheat if 60–100% black on warm, sunny days
- Paint color matters very little at night

Takeaway:

a lighter color box will be safer in a full-sun deployment

Objective 4. Provide guidance to DoD natural resource managers

Putting it all together...

Best practices for building bat boxes

- Use quality wood
 - Untreated lumber, not plywood
 - Materials will be \$150-200 for a large box
- Construct a tall box (3' or higher)
 - Multiple 3/4" chambers
- Small entrance to keep predators out
- Don't use mesh inside

Design components essential to building a warm, stable bat box

Hoeh et al. 2018 Crawford & O'Keefe 2021 Tillman et al. 2021 Bakken et al. 2022 Crawford et al. 2022 Crawford & O'Keefe 2023

Simulated temperatures in 2-chamber rocket box

From Bakken and O'Keefe, in prep.

Simulated temperatures with added water jacket

Design components essential to building a warm, stable bat box

Simulated temperatures adding insulation over heat storage

From Bakken and O'Keefe, in prep.

Design components essential to building a warm, stable bat box

Design components essential to building a warm, stable bat box

Best practices for *installing* bat boxes

- Deploy multiple roosts to give bats options
- Box facing south or east (ideally not west)
- Post or pole with entrance 12' or higher above ground
- Avoid tree mounts but do place boxes near trees when possible
- Mounted on a building is good but consider guano buildup below
- Away from bright lights (bats may avoid)

Monitor boxes and count bats

- Use a spotlight to check for bats
- Arrive 30 min before sunset
- Stay until 30 min after
- Use standard protocols (datasheet, multiple counters)

- Use trail cameras to observe bats, predators, and people around boxes
- Test predator guards to find out if they work

Measure temperature inside and outside boxes

- Top of the box is most important if you can only measure in 1 position
- Protect sensor so bats cannot contact it
- Pair with exit counts to learn how bat numbers affect temperatures

Maintain boxes over time!

- Clean boxes of parasites if possible or replace as needed
- Measure lifespan of a box by tracking deterioration
- Be careful around guano piles wear N95

Guidance and Resources

- NDCEE final report and recommendations for bat box use
 - <u>https://www.denix.osd.mil/ndcee/denix-files/sites/44/2024/04/Guidance_Artificial-Bat-Roost-Construction-Monitoring-Temperature-Acoustic-Lure.pdf</u>
 - Not covered today:
 - Testing different acoustic lure playback types for FL bonneted bats
 - Acoustic lure efficacy for little brown bats in MN
 - Bat box microclimates for different designs in FL
 - Be on the lookout for future journal articles on:
 - Bat box design and microclimate in MN (Boman et al.)
 - Acoustic lure efficacy for FL bonneted bats (Crawford et al.)
 - Paint color and temperature (O'Keefe and Wolff)
 - Bat box design and temperature simulations (Bakken and O'Keefe)

For tips on making bat boxes safer:

