

DoD Environmental Planning and Conservation Webinar Series

AN AERIAL BAT DETECTION TECHNOLOGY TO INVENTORY DOD INSTALLATIONS FOR THREATENED, ENDANGERED, AND AT-RISK BAT SPECIES

NOVEMBER 29, 2022

PLEASE MUTE YOUR PHONES

CONFERENCE NUMBER: 410-874-6749

CONFERENCE ID: 896-616-490#

WWW.DENIX.OSD.MIL/NR/
TWITTER: @DODNATRES

ENHANCED MONITORING OF IMPERILED BAT SPECIES ON DOD INSTALLATIONS USING AERIAL ACOUSTIC TECHNOLOGY

EMMA V. WILLCOX, DAVID A. BUEHLER, JOHN B. WILKERSON, JONATHAN YODER, AND ASHLEIGH B. CABLE- UNIVERSITY OF TENNESSEE

ERIC R. BRITZKE- US ARMY ENGINEER RESEARCH AND DEVELOPMENT CENTER

BACKGROUND

- \bullet DoD administers \sim 30 million acres of land
 - Large inaccessible impact areas
 - Support imperiled bat species
 - Regulatory and stewardship responsibilities
 - Endangered Species Act
 - Sikes Act
 - National Environmental Policy Act
 - More important due to white-nose syndrome

BACKGROUND

- Monitoring and managing bats on DoD installations
 - Difficult as access restricted to impact areas
 - Traditional methods of monitoring ineffective
 - Mist netting
 - Ground-based acoustic bat detectors

AERIAL BAT DETECTION TECHNOLOGY (ABDT)

Legacy Project #16-804

DoD ESTCP #W912HZ1720020

BACKGROUND

- Advantages of acoustic detection
 - Detect more species
 - Less personnel, training, and permits
 - Reduced time investment and resources
 - Little disruption of bat behavior

BUT.....

Can't be used in impact areas

Aerial Bat Detection Technology (ABDT)

ABDT

- Lifting system
 - Weather balloon

A: Emergency Release Servo

B: Helium Release Servo

C: Flight Control Board

D: Ballast Tank

E: Voltage Regulation Board

F: Batteries

G: Data Collection System

H: Microphone Array

PROJECT OBJECTIVES

- Validate the ability of ABDT to detect and record ultrasonic calls
- Demonstrate ability of ABDT to collect data on calls of bats
 - On tether
 - Stationary
 - Transect (proxy for free flight over inaccessible areas)
- Establish value of data collect using ABDT to supplement and extend bat monitoring already conducted.

PROJECT OBJECTIVES

- Validate the ability of ABDT to detect and record ultrasonic calls
- Demonstrate ability of ABDT to collect data on calls of bats
 - On tether
 - Stationary
 - Transect (proxy for free flight over inaccessible areas)
- Establish value of data collect using ABDT to supplement and extend bat monitoring already conducted.

TEST SITES

ABDT Sampling Locations

METHODS

- Field demonstration tests
 - Tethered stationary flights
 - 4 fixed altitudes
 - 30 minutes at each altitude
 - Tethered transect flights (proxy for free flight)
 - Altitude of 50 m
 - 250 m transect
 - Paired with ground based detectors
 - Analyzed using Sonobat

METHODS

- 10 of each flight type/site
 - 4-6 sampling locations

Fort Leonard Wood Sampling Sites

Stationary

ransect

0 0.5 1

Bat species detected

Bat species detected by an Aerial Bat Detector Technology (ABDT) and a ground-based bat detector at 4 study sites in TN and MO, May-August 2021.

	Site															
		SISE				FOT				AAFE				FLW		
	Statio	nary ²	Tran	sect ²	Stati	onary	Trai	ısect	Statio	onary	Trai	nsect	Statio	onary	Trai	nsect
Species	A	G	A	G	A	G	A	G	A	G	A	G	A	G	A	G
Big brown bat Eptesicus fuscus	-	-	X	X	X	X	-	-	X	X	X		X	X	X	X
Eastern red bat Lasiurus borealis	-	-	X	X	X	X	-	-	X	X	X	X	X	X	X	X
Gray bat Myotis grisescens	-	-	X	X	X		-	-	X	X	X		X	X	X	X
Evening bat <i>Nycticeius humeralis</i>	-	-	X	X	X		-	-	X	X	X	X	X	X	X	
Hoary bat Lasiurus cinereus	-	-			X	X	-	-	X	X	X		X			X
Indiana bat Myotis <u>sodalis</u>	-	-	X				-	-	X		X		X			
Little brown bat Myotis lucifugus	-	-	X				-	-			X		X			
Rafinesque's big-eared bat Corynorhinus rafinesquii	-	-			X		-	-								
Silver-haired bat Lasionycteris noctivagans	-	-	X	X	X	X	-	-	X	X	X	X	X	X	X	X
Southeastern bat Myotis austroriparius	-	-	X			X	-	-	X		X		X		X	
Tri-colored bat Perimyotis subflavus	-	-	X	X	X		-	-	X	X	X		X	X	X	X

¹ SISBP = Seven Islands State Birding Park, TN; FOTR = Forks of the River Wildlife Management Area, TN; AAFB = Arnold Air Force Base, TN; FLW = Fort Leonard Wood, MO.

² Stationary = Tethered stationary ABDT flight; Transect = Tethered transect ABDT flight.

Bat activity- Tethered stationary

Bat activity- Tethered transect

ABDT comparisons only- Tethered stationary

Effect of microphone orientation and flight altitude on the mean raw no. of bat passes (passes/30 min) and maximum species richness (species/30 min) recorded by an Aerial Bat Detection Technology (ABDT) flown on tether at sampling locations on 3 study sites in TN and MO, May–August 2021.

	_		Maximum			
Microphone	Altitude	Total no. passes	No. passes id to species	No. low freq. passes id to species ¹	No. high freq. passes id to species ²	Species richness
All	25	14.25 ± 18.13	10.93 ± 13.52	5.76 + 11.85	5.17 ± 7.25	5
	50	14.72 ± 21.90	11.31 ± 16.47	7.23 + 16.44	3.70 ± 4.68	5
	75	10.00 ± 20.76	7.38 ± 14.18	4.52 + 13.84	2.87 ± 4.54	6
	100	8.28 ± 17.03	6.17 ± 12.84	4.44 + 12.51	1.53 ± 2.14	5
Lateral	25	14.11 ± 18.38	10.80 ± 13.65	5.68 ± 11.85	5.12 ± 7.21	5
	50	14.30 ± 21.29	10.93 ± 15.91	7.13 ± 15.95	3.43 ± 4.09	5
	75	9.63 ± 20.71	7.07 ± 13.93	4.39 ± 13.59	2.68 ± 4.51	6
	100	8.13 ± 17.23	5.98 ± 12.86	4.32 ± 12.53	1.46 ± 2.13	5
Downward	25	14.67 ± 17.67	11.30 ± 13.33	6.00 ± 12.04	5.30 ± 7.48	5
	50	16.00 ± 24.00	12.45 ± 18.29	7.53 ± 18.13	4.50 ± 6.13	5
	75	11.10 ± 21.21	8.33 ± 15.10	4.90 ± 14.81	3.43 ± 4.65	6
10	100	8.76 ± 16.69	6.76 ± 12.98	4.80 ± 12.66	1.73 ± 2.20	5

¹ Species producing low frequency passes include: big brown bat (*Eptesicus fuscus*), hoary bat (*Lasiurus cinereus*), <u>Rafinesque's</u> big eared bat (*Corynorhinus rafinesquii*), big brown bat (*Eptesicus fuscus*), silver-haired bat (*Lasionycteris noctivagans*).

² Species producing high frequency passes include: Eastern red bat (*Lasiurus borealis*), gray bat (*Myotis grisescens*), evening bat (*Nycticeius humeralis*), Indiana bat (*Myotis sodalis*), little brown bat (*Myotis lucifugus*), Southeastern bat (*Myotis austroriparius*), tri-colored bat (*Perimyotis subflavus*).

ABDT comparisons only- Tethered stationary

Effect of microphone orientation and flight altitude on the mean raw no. of bat passes (passes/30 min) and maximum species richness (species/30 min) recorded by an Aerial Bat Detection Technology (ABDT) flown on tether at sampling locations on 3 study sites in TN and MO, May–August 2021.

	_		Maximum			
Microphone	Altitude	Total no. passes	No. passes id to species	No. low freq. passes id to species ¹	No. high freq. passes id to species ²	Species richness
All	25	14.25 ± 18.13	10.93 ± 13.52	5.76 + 11.85	5.17 ± 7.25	5
	50	14.72 + 21.90	11.31 + 16.47	7.23 + 16.44	3.70 + 4.68	5
	75	10.00 ± 20.76	7.38 ± 14.18	4.52 + 13.84	2.87 ± 4.54	6
	100	8.28 ± 17.03	6.17 ± 12.84	4.44 + 12.51	1.53 ± 2.14	5
Lateral	25	14.11 ± 18.38	10.80 ± 13.65	5.68 ± 11.85	5.12 ± 7.21	5
	50	14.30 + 21.29	10.93 + 15.91	7.13 + 15.95	3.43 + 4.09	5
	75	9.63 ± 20.71	7.07 ± 13.93	4.39 ± 13.59	2.68 ± 4.51	6
	100	8.13 ± 17.23	5.98 ± 12.86	4.32 ± 12.53	1.46 ± 2.13	5
Downward	25	14.67 ± 17.67	11.30 ± 13.33	6.00 ± 12.04	5.30 ± 7.48	5
	50	16.00 + 24.00	12.45 + 18.29	7.53 + 18.13	4.50 + 6.13	5
	75	11.10 ± 21.21	8.33 ± 15.10	4.90 ± 14.81	3.43 ± 4.65	6
	100	8.76 ± 16.69	6.76 ± 12.98	4.80 ± 12.66	1.73 ± 2.20	5
1 0 1 1	1 0		1 . (17	1 . / T	\ D (" 11'	11 . (0 1.

Species producing low frequency passes include: big brown bat (*Eptesicus fuscus*), hoary bat (*Lasiurus cinereus*), <u>Rafinesque's</u> big eared bat (*Corynorhinus rafinesquii*), big brown bat (*Eptesicus fuscus*), silver-haired bat (*Lasionycteris noctivagans*).

² Species producing high frequency passes include: Eastern red bat (*Lasiurus borealis*), gray bat (*Myotis grisescens*), evening bat (*Nycticeius humeralis*), Indiana bat (*Myotis sodalis*), little brown bat (*Myotis lucifugus*), Southeastern bat (*Myotis austroriparius*), tri-colored bat (*Perimyotis subflavus*).

ABDT comparisons only- Tethered stationary

Effect of flight altitude on the mean cumulative no. of bat passes (passes/30 mins) and maximum species richness (species/30 min) recorded by an Aerial Bat Detection Technology (ABDT) flown on tether at sampling locations on 3 study sites in TN and MO, May–August 2021.

		\overline{x}	$\overline{x} \pm SD$						
		No. passes id to	No. low freq. passes	No. high freq. passes					
Altitude	Total no. passes	species	id to species ¹	id to species ²	Species richness				
25	36.80 ± 46.17	24.17 + 28.72	12.63 ± 25.28	11.60 ± 15.88	6				
50	33.83 ± 49.62	21.97 + 31.23	13.57 ± 31.04	7.80 ± 8.58	6				
75	25.10 ± 50.36	16.77 + 31.83	10.17 ± 31.83	6.60 ± 8.66	7				
100	21.14 ± 43.85	14.00 + 28.17	9.63 ± 26.50	4.20 ± 7.25	6				

¹ Species producing low frequency passes include: big brown bat (*Eptesicus fuscus*), hoary bat (*Lasiurus cinereus*), <u>Rafinesque's</u> big eared bat (*Corynorhinus rafinesquii*), big brown bat (*Eptesicus fuscus*), silver-haired bat (*Lasionycteris noctivagans*).

² Species producing high frequency passes include: Eastern red bat (*Lasiurus borealis*), gray bat (*Myotis grisescens*), evening bat (*Nycticeius humeralis*), Indiana bat (*Myotis sodalis*), little brown bat (*Myotis lucifugus*), Southeastern bat (*Myotis austroriparius*), tri-colored bat (*Perimyotis subflavus*)

ABDT comparisons only- Tethered stationary

Effect of flight altitude on the mean cumulative no. of bat passes (passes/30 mins) and maximum species richness (species/30 min) recorded by an Aerial Bat Detection Technology (ABDT) flown on tether at sampling locations on 3 study sites in TN and MO, May–August 2021.

		\overline{x} :	$\overline{x} \pm SD$						
		No. passes id to	No. low freq. passes	No. high freq. passes					
Altitude	Total no. passes	species	id to species ¹	id to species ²	Species richness				
25	36.80 + 46.17	24.17 + 28.72	12.63 + 25.28	11.60 + 15.88	6				
50	33.83 ± 49.62	21.97 + 31.23	13.57 ± 31.04	7.80 ± 8.58	6				
75	25.10 ± 50.36	16.77 + 31.83	10.17 ± 31.83	6.60 ± 8.66	7				
100	21.14 ± 43.85	14.00 + 28.17	9.63 ± 26.50	4.20 ± 7.25	6				

¹ Species producing low frequency passes include: big brown bat (*Eptesicus fuscus*), hoary bat (*Lasiurus cinereus*), <u>Rafinesque's</u> big eared bat (*Corynorhinus rafinesquii*), big brown bat (*Eptesicus fuscus*), silver-haired bat (*Lasionycteris noctivagans*).

² Species producing high frequency passes include: Eastern red bat (*Lasiurus borealis*), gray bat (*Myotis grisescens*), evening bat (*Nycticeius humeralis*), Indiana bat (*Myotis sodalis*), little brown bat (*Myotis lucifugus*), Southeastern bat (*Myotis austroriparius*), tri-colored bat (*Perimyotis subflavus*)

ABDT comparisons only- Tethered transect

Effect of microphone orientation on the mean raw no. of bat passes (passes/10 mins) and maximum species richness (species/10 mins) recorded by an Aerial Bat Detection Technology (ABDT) flown on tether along transects at an altitude of 50 m on 3 study sites in TN and MO, May–August, 2021.

_		Max			
Microphone	Total no. passes	species	id to species	passes id to species	Species richness
Lateral	19.14 ± 26.92	14.72 ± 20.10	1.11 ± 1.82	13.61 ± 20.74	6
Down-facing	18.97 ± 27.02	14.54 ± 20.66	1.13 ± 1.83	13.40 ± 19.87	6

¹ Species producing low frequency passes include: big brown bat (*Eptesicus fuscus*), hoary bat (*Lasiurus cinereus*), Rafinesque's big eared bat (*Corynorhinus rafinesquii*), big brown bat (*Eptesicus fuscus*), silver-haired bat (*Lasionycteris noctivagans*).

² Species producing high frequency passes include: Eastern red bat (*Lasiurus borealis*), gray bat (*Myotis grisescens*), evening bat (*Nycticeius humeralis*), Indiana bat (*Myotis sodalis*), little brown bat (*Myotis lucifugus*), Southeastern bat (*Myotis austroriparius*), tri-colored bat (*Perimyotis subflavus*).

ABDT vs ground comparisons- Tethered stationary

Comparison of raw no. of bat passes (passes/30 min) recorded by the downward-facing microphone of an Aerial Bat Detection Technology (ABDT) flown on tether at an altitude of 25 m with those recorded by a ground-based detector at the same sampling location on 3 study sites in TN and MO, May–August 2021.

		ABDT	Ground	P
$\overline{x} \pm SD$	Total no. passes	14.25 <u>+</u> 18.13	3.51 ± 5.73	< 0.001
	No. passes id to species	10.93 ± 13.52	3.28 ± 5.10	< 0.001
	No. low freq. passes id to species ¹	5.76 ± 11.85	1.83 ± 3.98	0.029
	No. high freq. passes id to species ²	5.17 ± 7.25	1.34 ± 3.53	0.001
Max	Species richness	6	4	-

ABDT vs ground comparisons- Tethered stationary

Comparison of cumulative no. of bat passes (passes/30 min) recorded by the downward-facing microphone of an Aerial Bat Detection Technology (ABDT) flown on tether at 4 flight altitudes with those recorded by a ground-based detector at the same sampling locations on 3 study sites in TN and

MO, May-August 2021.

_			25 m			50 m			75 m			100 m	
		ABDT	Ground	P	ABDT	Ground	P	ABDT	Ground	\boldsymbol{P}	ABDT	Ground	P
$\overline{x} \pm SD$	Total no. passes	36.80 ±	3.51 <u>+</u>	< 0.001	33.83 <u>+</u>	3.92 <u>+</u>	< 0.001	25.10 ±	2.89 <u>+</u>	< 0.001	21.14 <u>+</u>	3.20 <u>+</u>	< 0.001
		46.17	5.73		49.62	5.69		50.36	5.00		43.85	5.10	
	No. passes id to	24.17 ±	3.28 ±	< 0.001	21.97 ±	3.31 ±	< 0.001	16.77 ±	2.55 ±	< 0.001	14.00 ±	2.83 <u>+</u>	< 0.001
	species	28.72	5.10		31.23	4.63		31.83	4.26		28.17	4.25	
	No. low freq.	12.63 ±	1.83 <u>+</u>	< 0.001	13.57 <u>+</u>	2.00 ±	< 0.001	10.17 <u>+</u>	1.45 <u>+</u>	0.002	9.63 <u>+</u>	0.93 <u>+</u>	0.002
	passes id to species ¹	25.28	3.98		31.83	4.04		31.83	2.77		26.51	2.62	
	No. high freq.	11.60 <u>+</u>	1.34 <u>+</u>	< 0.001	7.80 <u>+</u>	1.21 <u>+</u>	< 0.001	6.60 <u>+</u>	0.98 <u>+</u>	< 0.001	4.20 <u>+</u>	1.14 <u>+</u>	< 0.001
	passes id to species ²	15.88	3.53		8.58	2.39		8.66	1.67		7.25	1.83	
Max	Species richness	6	4	-	6	4	-	7	4		6	4	

Species producing low frequency passes include: big brown bat (*Eptesicus fuscus*), hoary bat (*Lasiurus cinereus*), Rafinesque's big eared bat (*Corynorhinus rafinesquii*), big brown bat (*Eptesicus fuscus*), silver-haired bat (*Lasionycteris noctivagans*)

² Species producing high frequency passes include: Eastern red bat (*Lasiurus borealis*), gray bat (*Myotis grisescens*), evening bat (*Nycticeius humeralis*), Indiana bat (*Myotis sodalis*), little brown bat (*Myotis lucifugus*), Southeastern bat (*Myotis austroriparius*), tri-colored bat (*Perimyotis subflavus*)

ABDT vs ground comparisons- Tethered transect

Comparison of cumulative no. of bat passes recorded by an Aerial Bat Detection Technology (ABDT) flow on tether along a transect at an altitude of 50 m with those recorded by 3 ground-based detectors on the same transect at sampling locations on 3 study sites in TN and MO, May–August 2021.

		ABDT	Ground	P
	Total no. passes	46.67 <u>+</u> 64.30	1.39 <u>+</u> 2.97	< 0.001
- + SD	No. passes id to species	29.37 <u>+</u> 37.22	1.12 ± 0.26	< 0.001
$\overline{x} \pm SD$	No. low freq. passes id to species ¹	2.40 ± 3.22	0.37 ± 1.20	0.002
	No. high freq. passes id to species ²	26.97 ± 36.65	0.76 ± 2.00	< 0.001
Max	Species richness	8	4	< 0.001

¹ Species producing low frequency passes include: big brown bat (*Eptesicus fuscus*), hoary bat (*Lasiurus cinereus*), Rafinesque's big eared bat (*Corynorhinus rafinesquii*), big brown bat (*Eptesicus fuscus*), silver-haired bat (*Lasionycteris noctivagans*)

² Species producing high frequency passes include: Eastern red bat (*Lasiurus borealis*), gray bat (*Myotis grisescens*), evening bat (*Nycticeius humeralis*), Indiana bat (*Myotis sodalis*), little brown bat (*Myotis lucifugus*), Southeastern bat (*Myotis gustroriparius*), tri-colored bat (*Perimyotis subflavus*)

SUMMARY

- ABDT detected 11 species
 - 3–10 species detected/site (depending on flight type)
- Greatest number of bat passes
 - Downward-facing microphone
 - 25-50 m flight altitude
- Compared to ground-based detectors
 - More bat passes
 - Greater species richness

SUMMARY

- Potential for ABDT
 - Supplement and extend bat monitoring on DoD installations
 - Access impact areas and monitor bats
 - Need to free-fly

QUESTIONS?

