

Munitions Response Site Prioritization Protocol

Module 6. Health Hazard Evaluation

April 2007

HHE Outline

- Health Hazard Evaluation (HHE) Module
 - Relative Risk Site Evaluation (RRSE)
 - Module Factors
 - Media
- Structure of the HHE Module
- Groundwater Evaluation
- Surface Water and Sediment Evaluation
- Surface Soil Evaluation
- Determining HHE Module Rating

- Provides a consistent DoD-wide approach for assigning a relative priority to munitions response sites (MRSs) where munitions constituents (MC) and any incidental nonmunitionsrelated contaminants are known or suspected to be present
- Considers the environmental media and their corresponding receptors that are most likely to be affected by MC at MRSs
- The HHE Module may be used to evaluate MC and other chemical contaminants present at an MRS

Munitions Constituents Review

MC are any materials originating from unexploded ordnance (UXO); discarded military munitions (DMM); or other military munitions, including explosive and nonexplosive materials; and emission, degradation, or breakdown elements of such ordnance or munitions

- 10 USC 2710(e)(3)

Is this an example of MC?

RRSE Framework

- The Relative Risk Site Evaluation (RRSE) framework serves as the basis for the HHE Module
 - Methodology used by DoD to evaluate the relative risk posed at an Installation Restoration Program (IRP) site in relation to other IRP sites
 - Based on the nature and extent of contamination at an IRP site, the potential for contaminants to migrate, and the populations and ecosystems that could be impacted
 - Ranks IRP sites as High, Medium, or Low relative-risk

HHE and RRSE Frameworks

- HHE uses the same data and process as the RRSE, but modifies the RRSE framework in several areas to address the unique requirements of MRSs –
 - The use of three outcomes (like in RRSE) would cause the HHE Module to influence the overall priority assignment greater than EHE and CHE Modules. To ensure balance between the three hazard modules, DoD designed the HHE Module with seven outcomes
 - Only MRSs with significant health hazards, an identified receptor, and evident migration pathways are assigned the highest HHE Module Rating
- The RRSE Comparison Value Tables have been updated for the Protocol and are provided in the Primer

HHE Module Factors

- Similar to EHE and CHE Modules, the HHE Module Rating is determined using three factors
 - Contaminant Hazard Factor (CHF) characterizes the type of contamination
 - Migration Pathway Factor (MPF) characterizes the potential for a receptor to encounter the hazard
 - Receptor Factor (RF) characterizes the impact the hazard may have on human and ecological populations
- The HHE's structure limits the influence of any one factor on the HHE Module Rating
- Unlike EHE and CHE Modules, the three factors are used to evaluate four distinct environmental media

Environmental Media in the HHE Module

*Surface water and sediment can be evaluated together because the contaminants potentially share the same migration pathway

Environmental Media Defined

Definition			Human Receptors	Ecological Receptors	
	Groundwater	Groundwater is precipitation or water from surface water bodies (e.g., lakes or streams) that soaks into the soil/bedrock and is stored underground	Individuals that may be exposed to contamination via on-site and downgradient water supply wells	Not evaluated	
	Surface water	Surface water is precipitation that collects in surface water bodies (e.g., oceans, lakes, or streams) or groundwater that discharges to the surface from springs	Individuals that may be exposed to contamination via on-site and	Critical habitats and other habitats	
	Sediment	Sediments are formed from the deposition of solid material that include the clay and silts on the bottom of a water body (e.g., ocean, lake, or stream)	downgradient water supplies and recreational areas	found in Figure 7.14 in the Primer	
	Surface soil	The layer of soil on the surface (with a depth of 0 to 6 inches)	Residents, people in schools and daycare, and workers who have direct access to contamination frequently	Not evaluated	

April 2007

Structure of the HHE Module

April 2007

HHE Module Scoring

- Factors are valued High (H), Medium (M), or Low (L) based on established categories within the factor
- Values for the three evaluation factors (CHF, MPF, RF) are grouped into a three-letter combination
- The three-letter combinations are distributed across seven categories, permitting only the most and least hazardous combinations in the highest and lowest categories. The other combinations are spread across the five remaining categories in a bell curve based on frequency of the combination

_		
Contaminant Hazard	Significant (H) Moderate (M) Minimal (L)	
Migration Pathway	Evident (H) Potential (M) Confined (L)	
Receptor	ldentified (H) Potential (M) Limited (L)	

HHE Module Ratings		
Rating		
А		
В		
С		
Ū		
D		
Ð		
E		
L		
F		
G		

HHE Module Scoring

- Each medium has a specific table associated with it (see Primer, Appendix A)
- Human and ecological receptors are evaluated on separate tables
- Each table assigns values to the Contaminant Hazard, Migration Pathway, and Receptor Factors

Contaminant Hazard Factor

- The CHF is evaluated differently than any other factor in the Protocol
- The CHF evaluates the potential hazards to receptors from MC and any incidental nonmunitions-related contaminants in the four distinct environmental media.
- The CHF is based on the ratio of the maximum concentration of a contaminant detected in an environmental medium to a risk-based comparison value for that contaminant in that medium
- The CHF does not include naturally occurring compounds that are detected within the established background concentration

Contaminant Hazard Factor (cont)

For each medium and receptor (human and/or ecological), the contaminants present at the MRS are evaluated against appropriate comparison values from the Comparison Value Tables (see Primer, Appendix B)

Human

- Carcinogenic chemicals compared to preliminary remediation goals (PRGs) that represent a 1-in-10,000 lifetime cancer risk
- Non-carcinogenic chemicals compared to daily reference doses (RfD)

Ecological

 Compared to ambient water quality criteria for surface water or sediment screening values

Contaminant Hazard Factor (cont)

The CHF Value is based on the sum of contaminant ratios –

Sum of Ratios > 100	Significant (H)
Sum of Ratios = 2 - 100	Moderate (M)
Sum of Ratios < 2	Minimal (L)

- Each contaminant ratio is calculated by dividing the concentration of each contaminant found at the MRS by the corresponding reference value
- DoD uses the 1x10⁻⁴ carcinogen reference value (CRV) instead of the 1x10⁻⁶ value to assign a relative priority for action, *not* to assign a value for cleanup. DoD's use of 1x10⁻⁴ as the CRV will not change the relative ranking of any individual MRS as all MRSs would shift equally if a different endpoint were used

Table 21 HE Module: Groundwater Data Element Table Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.				
Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios	
				Re
Arsenic	24 µg/L	4.5 µg/L	5.33	pr
				Ap
CHF Scale	CHF Value	Sum The Ra	tios	Ca
CHF > 100	H (High)	$CHF = \sum_{m=1}^{m} [Maximum Concentration]$	of Contaminant]	
100 > CHF > 2 M (Medium) CHF = 2 [Naxing an concentration of contaminant] 2 > CHF L (Low) [Comparison Value for Contaminant]			CO	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).			

List all chemicals present in the medium that are attributable to the MRS and the maximum concentration

Do not include naturally occurring compounds that are detected within the established background concentration

Record the comparison values for each chemical present (see Primer, Appendix B)

Calculate the contaminant ratio by dividing the concentration by the comparison value

What is the Contaminant Hazard Factor for this example?

	Table HHE Module: Groundwate				
compa recorde concer togethe use the	rison values (from Appendix B of the Pri ed on Table 27. Calculate and record the ntration by the comparison value. Dete er, including any additional groundwater c	ntaminants in the MRS's groundwater and the imer) in the table below. Additional contami e ratios for each contaminant by dividing the ermine the CHF by adding the contaminant r contaminants recorded on Table 27. Based CHF Value. If there is no known or suspect	nants can be maximum atios on the CHF,		
Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
Arsenic	24 µg/L	4.5 μg/L	5.33		
TCE	175 µg/L	140 µg/L	1.25		
CHF Scale	CHF Value	Sum The Ratios	6.58	\mapsto	Record the sum of the ratios
CHF > 100 100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} [Maximum Concentration of C]$	ontaminant]		latios
2 > CHF	L (LOW)	[Comparison Value for Conta	minant]		
CONTAMINANT DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H). HAZARD FACTOR (maximum value = H).		Μ		Use the sum of the ratios to determine the CHF Value	

Table 27 HHE Module: Supplemental Contaminant Hazard Factor Table						
MR: prev con Prin may app Note: Do not add ra	Contaminant Hazard Factor (CHE) DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate medias pecific tables. Note: Do not add ratios from different media.					
Media	Contaminant	Maximum Concentration	Comparison Value	Ratio		
	+					
	+					

If there are more than five contaminants present in any media, additional contaminants should be recorded on Table 27 (see Primer, Appendix A)

Migration Pathway Factor

- The Migration Pathway Factor assesses the potential for nonmunitions-related contaminants to migrate from the MRS
- Definitions, which differ slightly by media, are grouped into three possible classifications –

Evident (High)	There is analytical data or observable evidence that contamination is present at, is moving toward, or has moved to a point of exposure		
Potential (Medium)	Contamination has moved only slightly beyond the source, could move but is not moving appreciably, or information is not sufficient to select <i>Evident</i> or <i>Confined</i>		
Confined (Low)	Low possibility for contamination to be present at or migrate to a point of exposure		

Receptor Factor

- The Receptor Factor assesses the present or future likelihood that receptors will encounter MRS-specific contamination
- Definitions, which differ slightly by media, are grouped into three possible classifications –

ldentified (High)	Identified receptors have access to a medium to which contamination has moved or can move
Potential (Medium)	Potential for receptors to have access to a medium to which contamination has moved or can move
Limited (Low)	Little or no potential for receptors to have access to a medium to which contamination has moved or can move

Groundwater Evaluation Structure

Groundwater Evaluation Data

- Groundwater is precipitation or water from surface water bodies, like lakes or streams, that soaks into the soil and bedrock and is stored underground
- Considers human receptors that may be exposed to groundwater contamination
- Data do not have to be collected at the MRS, but any samples to be evaluated should be attributable to the MRS
- If groundwater is thought to be influenced by more than one MRS, assign the contaminant concentration to the MRS most likely to contain the contaminant source

Groundwater – Contaminant Hazard Factor

- Some MC have the potential to contaminate groundwater and can pose a risk to humans
- If MC are present, all chemicals present in the medium that are attributable to the MRS and their current concentrations should be recorded
- Naturally occurring compounds that are detected within the established background ranges should not be included in the analysis

April 2007

Groundwater Evaluation Scoring

Groundwater Evaluation – Example

- Leaky Point MRS is a former range where UXO, DMM, and MC are known to be present
- The closest town (Dunnville population 1,534) is one mile downgradient. Groundwater pumped from two nearby wells is the sole source of water supply for the entire population

Dunnville

26

Groundwater Evaluation – Example (cont)

- Groundwater monitoring wells installed 100 feet downgradient of the landfill boundary contain the following –
 - Arsenic 9.00 μg/L
 - PCBs 4.08 µg/L
 - RDX 38.0 µg/L
- Arsenic occurs naturally in the local groundwater at concentrations of 5-15 µg/L
- The comparison values (See Primer, Appendix B) for the contaminants present at the MRS are as follows –
 - Arsenic 4.50 μg/L
 - PCBs 3.30 µg/L
 - RDX 61.0 µg/L

How should we complete Table 21?

Surface Water/Sediment Evaluation Structure

Surface Water/Sediment Evaluation (cont)

- Definitions revisited
 - Surface water is precipitation that collects in surface water bodies, like oceans, lakes, or streams, or groundwater that discharges to the surface from springs

- Sediments form from the deposition of solid material, including the clays and silts on the bottom of an ocean, lake, or stream
- Use either surface water or sediment, which potentially affect the same receptors, to document the presence and migration of contaminants
- Data do not have to be collected at the MRS, but any samples to be evaluated should be attributable to the MRS

Surface Water/Sediment Evaluation (cont)

Review the most representative analytical MRS data to determine MC and other contaminants attributable to the MRS and detected in the surface water or sediment at or near the MRS

- Utilize available documentation such as topographical maps, preliminary assessments, or site inspections of the MRS and surrounding area to identify –
 - Surface water or topographic features potentially affected by MRS
 - Human and/or ecological receptors
 - Migration pathways to human and ecological receptors

Surface Water/Sediment Tables

- The process for completing the module scoring tables for surface water/sediment is identical to that described for groundwater
 - Enter surface water data for human receptors on Table 22, and ecological receptors on Table 23
 - Enter sediment data for human receptors on Table 24, and ecological receptors on Table 25

Surface Water/Sediment Evaluation Hints

- Contaminant Hazard Factor
 - Comparison values are based on ambient water quality criteria for ecological receptors

- Sediment screening values were developed in part by EPA's Equilibrium Partitionary Sediment Benchmarks
- Migration Pathway Factor
 - Contaminants are confined when transport from the MRS is restricted
 - Engineered controls effectively interrupt transport of contamination to surface water
 - Implemented removal or remedial actions restrict the movement of contaminants away from the source
 - Contaminant source is below ground surface and not subject to erosion or interaction with surface water
 - Topographic conditions prevent surface water from leaving the immediate area of the MRS
 - Man-made structures (e.g., a lake) may separate the source from the receptor, but do not imply confined condition

Surface Water/Sediment Evaluation Hints (cont)

Receptor Factor –

- Ecological receptors are limited to critical habitats and other environments that could reasonably be impacted by the MRS (see Primer, Figure 7.14)
- Human exposure to contaminated surface water/sediment can occur via –
 - Drinking water
 - Ingestion during recreational activities
 - Dermal contact
 - Consumption of aquatic species
 - Watering livestock or irrigating food crops

Surface Water/Sediment Evaluation

April 2007

Surface Water/Sediment Scoring

Surface Soil Evaluation Structure

Surface Soil Evaluation

- Surface soil is the layer of soil on the surface
- Soil receptors include only those humans with the potential to come into contact with contaminated surface soils
- Samples collected from a depth of 0-6 inches should be used for this evaluation
 - Use results from up to 24 inches below ground surface (bgs), if no surface soil results are available
 - Contaminated soil that comes to the surface or is exposed so that humans can come into contact with it is treated as surface soil (e.g., through frost heave)
- Complete the module scoring tables the same way as groundwater and surface water/sediment

Surface Soil Contaminant Hazard Factor

- Use the most representative analytical data to compare contaminant levels in surface soils with a potential for human exposure to the screening levels (see Primer, Appendix B)
- To attribute the contaminants to the MRS, observed concentrations must be distinguished from background concentrations
- Contaminants in soils with a potential for ecological exposure are not evaluated because comparison values for these contaminants are generally not available

Pavemer	ht.	Airport	
Tavemen	Contamination		
		Soil	
Cc	ntaminant Hazard Factor –	Migration Pathway Factor –	Receptor Factor –
High	Significant Contaminant Levels Sum of Ratios > 100	Evident Migration – Analytical data or observable evidence indicates that contamination in the surface soil is present, moving toward or has moved to a point of exposure	Identified Receptor – Receptors identified have access to contaminated soil
	Moderate Contaminant Levels Sum of Ratios = 2 – 100	Potential Migration – Contamination has moved slightly beyond the source, could move but is not moving appreciably or there is insufficient	Potential Receptor – Potential for receptors to have access to contaminated soil
Medium		information to support <i>Evident</i> or <i>Confined</i> ratings	

April 2007

Surface Soil Scoring

April 2007

Surface Soil Evaluation – Example

- At a former munitions burial ground, HMX has been identified in the surface soil (3,000 mg/kg)
- This area is part of the wildlife refuge and is habitat for the Simpson's deer, an endangered species
- Contamination has spread slightly toward a nearby popular hiking trail that follows the wildlife refuge

How should we complete Table 26?

Table 26 End Maximum Concentration of mg/kg) Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table. Contaminant Maximum Concentration (mg/kg) Comparison Value (mg/kg) Ratio					List the names and maximum concentrations of all MC and associated contaminants List the associated comparison values from Appendix B of Primer Calculate the ratio for each
НМХ	3000 mg/kg	1800 mg/kg	1.67	\rightarrow	contaminant
CHF Scale CHF > 100 100 > CHF > 2 2 > CHF CONTAMINANT HAZARD FACTOR DIRECTIONS: Circle th Classification Evident Potential Confined	CHF Value Sum the Ratios H (High) CHE - S [Maximum Concentration of C [Maximum Concentration of C L (Low) [Comparison Value for Cont DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H). [Comparison Value for Cont Migratory Pathway Factor Imaximum value = H). Migratory Pathway Factor Imaximum value = H). Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure. Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		Contaminant] Taminant] MRS. Value H nt		Calculate the sum of the ratios Circle the value for CHF that corresponds to the sum of the ratios Record the value Circle the value for the Migration Pathway Factor
MIGRATORY	controls).	ne presence of geological structures or physical ghest value from above in the box to the	M		Record the value
PATHWAY FACTOR DIRECTIONS: Circle th Classification Identified Potential Limited RECEPTOR FACTOR	De Identified receptors have access to surface so Potential for receptors to have access to surface Little or no potential for receptors to have acce can move. DIRECTIONS: Record <u>the single hi</u> right (maximum value	Factor to the surface soil receptors at the MRS. scription to which contamination has moved or can move. e soil to which contamination has moved or can move ss to surface soil to which contamination has moved or ghest value from above in the box to the	Value H a. M or L H		Circle the value for the Receptor Factor Record the value

Determining the HHE Module Rating

- Each three-letter combination of the environmental media corresponds to a letter rating
- The A-G ratings represents the HHE relative risk at the MRS with 'A' having the highest risk and 'G' having the lowest risk
- The highest pathway (medium) rating is the HHE Module Rating
- The module can also receive one of three alternative module ratings –
 - Evaluation Pending
 - No Longer Required
 - No Known or Suspected MC Hazard

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- Record the letter values (H, M, L) for the Contaminant Hazard, Migration Pathway, and Receptor Factors for the media (from Tables 21–26) in the corresponding boxes below.
- Record the media's three letter combinations in the Three Letter Combination boxes below (three letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value		ThreeL etter Combination (HsMs L s)		Media Rating (AG)	
Groundwater (Table 21)				П				
Surface Water/Human Endpoint (Table 22)	L	н	н		HHL	1	С	
Sediment/Human Endpoint (Table 23)								
Surface Water/Ecological Endpoint (Table 24)	М	Н	н		ннм		В	-
Sediment/Ecological Endpoint (Table 25)								
Surface Soil (Table 26)								
DIRECTIONS (cont.):		нн	IE M	IODULE RATI	В			
Select the single highest Media Rating (A is highest; G is lowest) and enter the letter		HHE Ratings (for reference only)						
	in the HHE Module Rating box.			omb	pination	Rating		
					IHH	A		
Note:			HHM HHL HMM				В	
An alternative module when a module letter							С	
alternative module ra	iting is used wh	en more		F	IML	D		
information is needed				Ν	1MM			
media, contamination addressed, or there i				ŀ	HLL	E		
contamination was e				IML	_			
					MLL	F		
		l	LLL		G			
							Evaluation Pending	
	Alternative Module Ratings No Ki Suspe				No Longer Required			
					No Known or Suspected MC Hazard			

Record the scores for each factor of each relevant medium

Arrange the factor values for each medium from highest (H) to lowest (L) to determine the three-letter combination

- Use the HHE Module Rating
 reference section below to determine the appropriate Media Rating
- Record the highest Media Rating from above. This is the HHE Module Rating

Health Hazard Evaluation Module

Questions?

- Former Camp Swampy is located about four miles from the Gulf of Mexico. The Swampy River flows through the Camp and discharges into the Gulf. The river is frequently used for recreational purposes
- The MRS is located on the eastern portion of the former Camp Swampy. The MRS is a state wildlife refuge containing three endangered species. The MRS is partially fenced and unmonitored
- The western half of Camp Swampy was sold to Swampy Inc. in 1993 and is surrounded by an electric fence
- The northern half of the Camp Swampy MRS contains 12 unused buildings, but a town with 600 houses and a population density of 125 people per square mile is only 1 mile away

- The following MC contaminants were identified in the Swampy River and attributed to the OB/OD site—
 - White Phosphorous 0.50 μg/L
 - Copper 20.2 µg/L
- No other contamination was found in samples taken from groundwater, sediments, or surface soils
- Potential for human and wildlife exposure is high because the Swampy River flows through a state wildlife refuge

- Comparison values for freshwater exposure of MC contaminants to human receptors
 - White Phosphorus 0.73 µg/L (water)*
 - Copper 1500.0 µg/L (water)*
- Comparison values for freshwater exposure of MC contaminants to ecological receptors
 - White Phosphorus 0.10 µg/L (water)*
 - Copper 3.10 µg/L (water)*

Evaluating surface water for human and ecological receptors, what is the HHE Module Rating at Camp Swampy?

DIRECTIONS: Record comp record conce togeth use th	arison values (from Appendix B of the P led on Table 27. Calculate and record the entration by the comparison value. Det er, including any additional surface water e CHF Scale to determine and record the	an Endpoint Data Element Table	inants can be maximum ratios on the CHF, ted MC		
Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios	l	
White Phosph	norus 0.50 µg/L	0.73 µg/L	0.68		Surface water for human receptors:
Copper	20.2 µg/L	1500.0 µg/L	0.01		
CHF Scale	CHF Value	Sum The Ratios	0.69		<u>0.50 μg/L</u> + <u>20.2 μg/L</u> = 0.69
CHF > 100	H (High)	CHE - T [Maximum Concentration of C	ontaminantl	T i i i i i i i i i i i i i i i i i i i	0.73 μg/L 1500.0 μg/L
100 > CHF > 2	M (Medium)				•···• [#9; = ··•••• [#9; =
2 > CHF CONTAMINANT	L (Low)	[Comparison Value for Conta	aminantj		
HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	L		L= 2 > CHF
DIRECTIONS: Circle		<u>way Factor</u> to the surface water migratory pathway at the cription	e MRS. Value		
Evident	Analytical data or observable evidence indicates	that contamination in the surface water is present at,	H		Contaminants are moving
Potential		ure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident	M		toward human receptors
Confined	Information indicates a low potential for contamin a potential point of exposure (possibly due to the controls).	nant migration from the source via the surface water to presence of geological structures or physical	L		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value =	hest value from above in the box to the = H).	н		
	Receptor F	•		1	
Classification	-	cription	Valuo		
Identified	Identified receptors have access to surface wate	r to which contamination has moved or can move.	H		Human receptors have access
Potential	Potential for receptors to have access to surface move.	water to which contamination has moved or can	M	Γ .	to surface water
Limited		to surface water to which contamination has moved	L	1	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> the right (maximum val		н		
	No Known or Suspected Su	urface Water (Human Endpoint) MC Hazard			

DIRECTIONS: Record compa recorde concer togethe use the	<u>Contaminant Hazaro</u> d the maximum concentrations of all con arison values (from Appendix B of the Pr ed on Table 27. Calculate and record the ntration by the comparison value. Dete er, including any additional surface water e CHF Scale to determine and record the	ical Endpoint Data Element Table	nants can be maximum atios on the CHF, ted MC	
Contaminant	Maximum Concentration (µg/L)	Comparison Value (μg/L)	Ratios	
White Phosph	norus 0.50 µg/L	0.1 μg/L	5.0	Surface water for ecologica receptors:
Copper	20.2 µg/L	3.1 μg/L	6.5	
				0.50 μg/L + 20.2 μg/L = 11.5
CHF Scale	CHF Value	Sum the Ratios	11.5	$0.30 \mu\text{g/L} + 20.2 \mu\text{g/L} = 11.3$
CHF > 100	H (High)	$CHF = \sum_{maximum} [Maximum Concentration of Concentrati$	ontaminantl	0.10 μg/L 3.1 μg/L
100 > CHF > 2	M (Medium)	CHF =IMAXIMUM CONCENTRATION OF CONTA	minant	
2 > CHF			ammanig	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	M	M= 100< CHF >2
DIRECTIONS: Circle the Classification		vay Factor o the surface water migratory pathway at the cription	MRS. Value	
				Contaminants are moving
Evident		that contamination in the surface water is present at,	(F)	Contaminants are moving
	moving toward, or has moved to a point of expose Contamination in surface water has moved only		M	toward ecological receptors
Evident Potential Confined	moving toward, or has moved to a point of expose Contamination in surface water has moved only move but is not moving appreciably, or informatio or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to t controls).	sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident nant migration from the source via the surface water the presence of geological structures or physical		
Evident Potential	moving toward, or has moved to a point of expose Contamination in surface water has moved only move but is not moving appreciably, or informatio or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to t controls).	sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident nant migration from the source via the surface water the presence of geological structures or physical hest value from above in the box to the	м	
Evident Potential Confined MIGRATORY PATHWAY FACTOR	moving toward, or has moved to a point of expose Contamination in surface water has moved only move but is not moving appreciably, or informatio or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to to controls). DIRECTIONS: Record <u>the single hig</u> right (maximum value = <u>Receptor F</u>	sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident nant migration from the source via the surface water the presence of geological structures or physical <u>hest value</u> from above in the box to the = H).	M	
Evident Potential Confined MIGRATORY PATHWAY FACTOR	moving toward, or has moved to a point of expose Contamination in surface water has moved only i move but is not moving appreciably, or informatio or Confined. Information indicates a low potential for contamir to a potential point of exposure (possibly due to to controls). DIRECTIONS: Record the single hig right (maximum value = <u>Receptor F</u> the value that corresponds most closely to	sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident hant migration from the source via the surface water the presence of geological structures or physical <u>hest value</u> from above in the box to the = H). <u>actor</u>	M	toward ecological receptors
Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle th Classification	moving toward, or has moved to a point of expose Contamination in surface water has moved only i move but is not moving appreciably, or informatio or Confined. Information indicates a low potential for contamir to a potential point of exposure (possibly due to to controls). DIRECTIONS: Record the single hig right (maximum value = <u>Receptor F</u> the value that corresponds most closely to	sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident nant migration from the source via the surface water the presence of geological structures or physical <u>hest value</u> from above in the box to the = H). <u>actor</u> to the surface water receptors at the MRS. cription	M L H Value	toward ecological receptors
Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle th Classification Identified	moving toward, or has moved to a point of expose Contamination in surface water has moved only move but is not moving appreciably, or informatio or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to to controls). DIRECTIONS: Record <u>the single high</u> right (maximum value = <u>Receptor F</u> the value that corresponds most closely to <u>Des</u> Identified receptors have access to surface wate Potential for receptors to have access to surface	sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident nant migration from the source via the surface water the presence of geological structures or physical <u>hest value</u> from above in the box to the = H). <u>actor</u> to the surface water receptors at the MRS. cription	M L H	
Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle th	moving toward, or has moved to a point of expose Contamination in surface water has moved only i move but is not moving appreciably, or informatio or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to to controls). DIRECTIONS: Record the single high right (maximum value = Receptor F the value that corresponds most closely to Des Identified receptors have access to surface wate Potential for receptors to have access to surface move.	sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident thant migration from the source via the surface water the presence of geological structures or physical <u>hest value</u> from above in the box to the = H). <u>actor</u> to the surface water receptors at the MRS. <u>cription</u> r to which contamination has moved or can move.	M L H Value	toward ecological receptors Ecological receptors have
Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle th Classification Identified Potential	moving toward, or has moved to a point of expose Contamination in surface water has moved only i move but is not moving appreciably, or informatio or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to to controls). DIRECTIONS: Record the single high right (maximum value = Receptor F the value that corresponds most closely to Des Identified receptors have access to surface wate Potential for receptors to have access to surface move. Little or no potential for receptors to have access or can move.	sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident hant migration from the source via the surface water the presence of geological structures or physical <u>hest value</u> from above in the box to the = H). <u>actor</u> to the surface water receptors at the MRS. <u>cription</u> r to which contamination has moved or can move. water to which contamination has moved or can is to surface water to which contamination has moved to surface water to which contamination has moved <u>hest value</u> from above in the box to the	M L H Value	toward ecological receptors Ecological receptors have

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- Record the media's three letter combinations in the Three Letter Combination boxes below (three letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value		ThreeL etter Combination (HsMs L s)	Media Rating (AG)	
Groundwater (Table 21)							
Surface Water/Human Endpoint (Table 22)	L	н	н		HHL	С	
Sediment/Human Endpoint (Table 23)							
Surface Water/Ecological Endpoint (Table 24)	М	н	н		ннм	В	╞
Sediment/Ecological Endpoint (Table 25)							[
Surface Soil (Table 26)							
 DIRECTIONS (cont.): 4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box. 			нн	ΕM	IODULE RATING	В	
			HHE Ratings (for reference only)				
			Co	omb	Rating		
		H	AB				
Note:				H	D		
An alternative module when a module letter					с		
alternative module ra	iting is used wh	en more		ŀ	D		
information is needed				Μ			
media, contamination addressed, or there i				ł	E		
contamination was e				N	F		
				1	G		
					Evaluation Pending		
			Alternati	vel	Module Ratings	No Longer Required	
						No Known or Suspected MC Hazard	

Record the scores for each factor of each relevant medium

Arrange the factor values for each medium from highest (H) to lowest (L) to determine the three-letter combination

- Use the HHE Rating
 reference section below to determine the appropriate Media Rating
- Record the highest Media Rating from above. This is the HHE Module Rating