An IC/MS Production Method for the Analysis of Perchlorate

Johnson Mathew – US EPA Region-6
Jay Gandhi – Metrohm-Peak Inc
Joe Hedrick – Agilent Technologies
 phone: 302-633-8625
 Joe_Hedrick@agilent.com
*Reference herein to any specific commercial products or nonprofit organization, process, or service by trade name, trademark, manufacturer, or other-wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government and shall not be used for advertising or product endorsement purposes.
Need for Trace Level Perchlorate Analysis

• Trace level Perchlorate analysis has driven conventional methods (EPA 314.0) to the edge

• In high matrix interferences (TDS = 3000ppm), it is difficult to accurately measure Perchlorate by conductivity detection below 1 ppb

• A collaborative study between these three organizations has developed a method which will show…..
Goals And Solutions For IC/MS Analysis Of Perchlorate

• Simple and rugged
 • External standard method (within EPA 314)
 • Single stage MS (quadrupole)
 • 4mm column

• Accurate and precise to 1 ppb
 • MDL < 100 parts per trillion (ppt)
 • Must be able to meet QC for prolonged unattended operation
The Bottom Line

• Precision, Sensitivity and Accuracy
 • RSD <4% at 1 ppb for both m/z 99 and 101
 • MDL~70 parts per trillion (ppt)
 • >90% Recovery for Spikes at 0.5 and 1 ppb in heavy matrix and real samples

• Reliability for High Through-Put Laboratories
 • Meets standard QC procedures over 24 hour period
Instrument Set - Up

• Metrohm Advanced IC
 • 100 uL loop injection
 • Column: MetroSep ASUPP-5 (4mm x 100mm)
 • Eluant: 30mM NaOH + 30% Methanol
 • Flow rate: 0.8 ml/min with **NO SPLITTING**.

• Agilent 1100LC/MSD ESI
 • Negative mode “auto-tune”
 • $V_{cap} = 1400V$, Drying Gas = **9L/min @ 320 C**.
 • Nebulizer Pressure=20 psig.
 • Fragmentor = 140 V.
Agilent 1100 LC/MSD SL AP Electrospray

- HPLC inlet
- Nebulizer gas inlet
- Nebulizer
- Skimmer
- Vacuum Wall
- Lenses
- Quadrupole
- HED detector

Neutral Molecules
Analyte Ions
Clusters
Salts

Fragmentation zone (CID)

heated N₂

Agilent Technologies
Picture of Instrument Set-up
Calibration Data (m/z 99)

perchlorate 101, MSD1 99
Area = 143840.996*Amnt -2810.7345

Range for Calibration Standards
0.1ppb to 10ppb (ClO$_4$$^-_1$)

Correlation: 0.99942

Amount[ng/ml] vs Area graph
Calibration Data (m/z 101)

Range for Calibration Standards 0.1ppb to 10ppb (ClO$_4^{-}$)
Total Ion Chromatograms (TIC) Calib. Standards and Blank

Calibration Range from 0.1 ppb to 10.0 ppb

Agilent Technologies
0.79 ppb Standard

M/z = 99

M/z = 101
Extracted Ion Chromatograms for 0.5 ppb standard

MSD1 99, EIC=98.7:99.7 (ICDATA~1\ICBLK1D\IC000017.D) API-ES, Neg, SIM, Frag: 140, "neg sim"
MSD1 101, EIC=100.7:101.7 (ICDATA~1\ICBLK1D\IC000017.D) API-ES, Neg, SIM, Frag: 140, "neg sim"
Results of UHP Water Fortified with Perchlorate

<table>
<thead>
<tr>
<th>SAMPLE ID</th>
<th>TRUE CONCENTRATION</th>
<th>PPB (M/Z = 99)</th>
<th>% Recovery (m/z99)</th>
<th>PPB (M/Z = 101)</th>
<th>% Recovery (m/z101)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 PPB</td>
<td>0.480</td>
<td>0.487</td>
<td>99.14%</td>
<td>0.519</td>
<td>108.33%</td>
</tr>
<tr>
<td>0.5 PPB</td>
<td>0.480</td>
<td>0.477</td>
<td>99.38%</td>
<td>0.471</td>
<td>98.13%</td>
</tr>
<tr>
<td>0.5 PPB</td>
<td>0.480</td>
<td>0.460</td>
<td>95.83%</td>
<td>0.490</td>
<td>102.08%</td>
</tr>
<tr>
<td>0.5 PPB</td>
<td>0.480</td>
<td>0.477</td>
<td>99.38%</td>
<td>0.492</td>
<td>102.50%</td>
</tr>
<tr>
<td>0.5 PPB</td>
<td>0.480</td>
<td>0.520</td>
<td>108.33%</td>
<td>0.505</td>
<td>105.21%</td>
</tr>
<tr>
<td>0.5 PPB</td>
<td>0.480</td>
<td>0.494</td>
<td>102.92%</td>
<td>0.509</td>
<td>106.04%</td>
</tr>
<tr>
<td>Average</td>
<td>0.480</td>
<td>0.486</td>
<td>101.22%</td>
<td>0.498</td>
<td>103.68%</td>
</tr>
<tr>
<td>Std. Dev</td>
<td>0.020</td>
<td>0.042</td>
<td>0.017</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>RSD</td>
<td>4.18%</td>
<td>4.18%</td>
<td>3.41%</td>
<td>3.41%</td>
<td></td>
</tr>
<tr>
<td>1.0 PPB</td>
<td>0.780</td>
<td>0.756</td>
<td>96.92%</td>
<td>0.768</td>
<td>98.46%</td>
</tr>
<tr>
<td>1.0 PPB</td>
<td>0.780</td>
<td>0.810</td>
<td>103.85%</td>
<td>0.830</td>
<td>106.41%</td>
</tr>
<tr>
<td>1.0 PPB</td>
<td>0.780</td>
<td>0.776</td>
<td>99.49%</td>
<td>0.772</td>
<td>98.97%</td>
</tr>
<tr>
<td>1.0 PPB</td>
<td>0.780</td>
<td>0.799</td>
<td>102.44%</td>
<td>0.754</td>
<td>96.67%</td>
</tr>
<tr>
<td>1.0 PPB</td>
<td>0.780</td>
<td>0.788</td>
<td>101.03%</td>
<td>0.768</td>
<td>98.46%</td>
</tr>
<tr>
<td>1.0 PPB</td>
<td>0.780</td>
<td>0.792</td>
<td>101.54%</td>
<td>0.807</td>
<td>103.46%</td>
</tr>
<tr>
<td>Average</td>
<td>0.780</td>
<td>0.787</td>
<td>100.88%</td>
<td>0.783</td>
<td>100.41%</td>
</tr>
<tr>
<td>Std. Dev</td>
<td>0.019</td>
<td>0.024</td>
<td>0.029</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>RSD</td>
<td>2.40%</td>
<td>2.40%</td>
<td>3.70%</td>
<td>3.70%</td>
<td></td>
</tr>
</tbody>
</table>
Synthetic Matrix Spikes Overlaid with 1ppb Standard

No Matrix
200ppm Cl, CO₃, SO₄
500ppm Cl, CO₃, SO₄
1000ppm Cl, CO₃, SO₄
Single Ion Chromatograms of High Matrix Spike

MSD1 99, EIC=98.7:99.7 (ICDATA~1\ICBLK1D\IC000048.D) API-ES, Neg, SIM, Frag: 140, "neg sim"
MSD1 101, EIC=100.7:101.7 (ICDATA~1\ICBLK1D\IC000048.D) API-ES, Neg, SIM, Frag: 140, "neg sim"

m/z = 99

m/z = 101
Results of Matrix Fortified with Perchlorate

<table>
<thead>
<tr>
<th>SAMPLE ID</th>
<th>TRUE CONCENTRATION</th>
<th>PPB (M/Z = 99)</th>
<th>% Recovery (m/z99)</th>
<th>PPB (M/Z = 101)</th>
<th>% Recovery (m/z101)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 PPM EACH OF CL,CO3 & SO4</td>
<td>0.780</td>
<td>0.799</td>
<td>102.44%</td>
<td>0.784</td>
<td>100.51%</td>
</tr>
<tr>
<td>500 PPM EACH OF CL,CO3 & SO4</td>
<td>1.000</td>
<td>0.804</td>
<td>80.40%</td>
<td>0.808</td>
<td>80.80%</td>
</tr>
<tr>
<td>1000 PPM EACH OF CL,CO3 & SO4</td>
<td>1.000</td>
<td>0.930</td>
<td>93.00%</td>
<td>0.940</td>
<td>94.00%</td>
</tr>
<tr>
<td>200 PPM EACH OF CL,CO3 & SO4</td>
<td>0.780</td>
<td>0.700</td>
<td>89.74%</td>
<td>0.770</td>
<td>98.72%</td>
</tr>
<tr>
<td>500 PPM EACH OF CL,CO3 & SO4</td>
<td>1.000</td>
<td>0.870</td>
<td>87.00%</td>
<td>0.860</td>
<td>86.00%</td>
</tr>
<tr>
<td>1000 PPM EACH OF CL,CO3 & SO4</td>
<td>1.000</td>
<td>0.973</td>
<td>97.30%</td>
<td>0.986</td>
<td>98.60%</td>
</tr>
<tr>
<td>200 PPM EACH OF CL,CO3 & SO4</td>
<td>0.780</td>
<td>0.810</td>
<td>103.85%</td>
<td>0.796</td>
<td>102.05%</td>
</tr>
<tr>
<td>500 PPM EACH OF CL,CO3 & SO4</td>
<td>1.000</td>
<td>0.851</td>
<td>85.10%</td>
<td>0.846</td>
<td>84.60%</td>
</tr>
<tr>
<td>1000 PPM EACH OF CL,CO3 & SO4</td>
<td>1.000</td>
<td>0.990</td>
<td>99.00%</td>
<td>0.977</td>
<td>97.70%</td>
</tr>
<tr>
<td>BLANK</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>CC 10 PPB</td>
<td>0.780</td>
<td>0.747</td>
<td>95.77%</td>
<td>0.742</td>
<td>95.13%</td>
</tr>
<tr>
<td>200 PPM EACH OF CL,CO3 & SO4</td>
<td>0.780</td>
<td>0.799</td>
<td>102.44%</td>
<td>0.777</td>
<td>99.62%</td>
</tr>
<tr>
<td>500 PPM EACH OF CL,CO3 & SO4</td>
<td>1.000</td>
<td>0.920</td>
<td>92.00%</td>
<td>0.921</td>
<td>92.10%</td>
</tr>
<tr>
<td>1000 PPM EACH OF CL,CO3 & SO4</td>
<td>1.000</td>
<td>1.000</td>
<td>100.00%</td>
<td>1.040</td>
<td>104.00%</td>
</tr>
<tr>
<td>200 PPM EACH OF CL,CO3 & SO4</td>
<td>0.780</td>
<td>0.860</td>
<td>102.26%</td>
<td>0.830</td>
<td>106.4%</td>
</tr>
<tr>
<td>500 PPM EACH OF CL,CO3 & SO4</td>
<td>1.000</td>
<td>0.930</td>
<td>93.00%</td>
<td>0.913</td>
<td>91.30%</td>
</tr>
<tr>
<td>1000 PPM EACH OF CL,CO3 & SO4</td>
<td>1.000</td>
<td>1.090</td>
<td>109.00%</td>
<td>1.050</td>
<td>105.00%</td>
</tr>
<tr>
<td>200 PPM EACH OF CL,CO3 & SO4</td>
<td>0.780</td>
<td>0.800</td>
<td>102.56%</td>
<td>0.850</td>
<td>108.97%</td>
</tr>
<tr>
<td>500 PPM EACH OF CL,CO3 & SO4</td>
<td>1.000</td>
<td>0.890</td>
<td>89.00%</td>
<td>0.904</td>
<td>90.40%</td>
</tr>
<tr>
<td>1000 PPM EACH OF CL,CO3 & SO4</td>
<td>1.000</td>
<td>1.040</td>
<td>104.00%</td>
<td>1.070</td>
<td>107.00%</td>
</tr>
</tbody>
</table>

Average: 96.67% 97.10%

Std.Dev: 0.082 0.080

RSD %: 8.48% 8.22%

Agilent Technologies
Sample and Sample Spike (with Sulfonate Detergents)

Sample 0.35ppb

Sample 0.35ppb + 1ppb Spiked ClO₄⁻

Sample 0.35ppb ClO₄⁻
Lettuce and Spike

MSD1 TIC, MS File (ICDATA~1!ICBLK1E!IC000037.D) API-ES, Neg, SIM, Frag: 140, "neg sim"

MSD1 TIC, MS File (ICDATA~1!ICBLK1E!IC000039.D) API-ES, Neg, SIM, Frag: 140, "neg sim"

Lettuce extract + 8ppb Perchlorate Spike

Lettuce extract

Agilent Technologies
500 ppb and sequential blank

500 ppb Perchlorate std in 3000ppm Matrix

Blank DI water after std.
1 ppb Perchlorate in 3000ppm Total Dissolved Salt (TDS) after 125 injections
95% Recovery

Matrix containing 1000ppm each of Cl\(^{-}\), CO\(_3\)\(^{2-}\), SO\(_4\)\(^{2-}\)
1 ppb Perchlorate Standard w/IS

MSD1 99, EIC=98.7:99.7 (EPA_PA006-0601.D) API-ES, Neg, SIM, Frag: 150
MSD1 101, EIC=100.7:101.7 (EPA_PA006-0601.D) API-ES, Neg, SIM, Frag: 150
MSD1 105, EIC=104.7:105.7 (EPA_PA006-0601.D) API-ES, Neg, SIM, Frag: 150
MSD1 107, EIC=106.7:107.7 (EPA_PA006-0601.D) API-ES, Neg, SIM, Frag: 150
Houston 1ppb spike
College Station 0.5 ppb spike

MSD 99, EIC=98.7:99.7 (EPA_PA\057-7301.D) API-ES, Neg, SIM, Frag: 150
MSD 101, EIC=100.7:101.7 (EPA_PA\057-7301.D) API-ES, Neg, SIM, Frag: 150
MSD 105, EIC=104.7:105.7 (EPA_PA\057-7301.D) API-ES, Neg, SIM, Frag: 150
MSD 107, EIC=106.7:107.7 (EPA_PA\057-7301.D) API-ES, Neg, SIM, Frag: 150
SF Bay Water with 1ppb IS
SF Bay Water with 1ppb IS
San Francisco Bay Water with 1ppb IS

IS Recovery is 107%

Quants as 20ppt
Current Work

• Current MeOH/NaOH mobile phase column combo is “bulletproof”
 • Little to no variation in retention/signal due to mobile phase composition, column lot #, MS (has worked on 1946D, 1956A, 1956B) or MS conditions

 but.....

• Get TAT under 15 minutes
 • Different mobile phases, different lengths of columns

• Explore unsuppressed mobile phases
Acknowledgements

• Rick McMillin, Deputy Branch Chief - USEPA Region 6
• Melvin Ritter, Team Leader - USEPA Region 6
• Diane Gregg, Team Leader - USEPA Region 6
• Dr. Carl Zhang, University of Houston, Clear Lake Campus
Alternate mobile phases

• NaOH/MeOH works but…
 • Peak shape
 • Sulfate tail
 • Turn around time
Analysis Parameters

- Agilent 1100 binary LC/1100 MSD
 - ESI
 - Drying Gas, 11L/min
 - Nebulizer pressure, 20 psi
 - SIM
 - Capillary voltage, 2500 V
- 80mM Ammonium Formate adjusted to pH 9 with ammonia
- 0.7ml/min
- 5cm x 3mm Alltech NovaSep A2
80mM Ammonium Formate pH9 20% ACN
5uL injection, 1 ppm Perchlorate
80mM Ammonium Formate pH9

MSD2 TIC, MS File (10_15\AF000009.D) API-ES, Neg, SIM, Frag: 200
MSD2 TIC, MS File (10_15\AF000011.D) API-ES, Neg, SIM, Frag: 200
MSD2 TIC, MS File (10_15\AF000012.D) API-ES, Neg, SIM, Frag: 200

40% ACN
30% ACN
20% ACN
10 ppm perchlorate using ACN gradient (10-50% in 10 minutes) and 8 uL injection
Synthetic matrix with 0.5ppb Perchlorate spike
8 ul injection

Matrix containing 1000ppm each of Cl\(^{-}\), CO\(_3\)\(^{2-}\), SO\(_4\)\(^{2-}\)
Well Water from College Station
Can the injection size be scaled up?

- Peak width effects
- Matrix effects on retention time
- Sulfate behavior
Stability during a run without internal standard for 8uL injection

• Over 50 samples of “high matrix”, Houston and College Station tap

• CCV recovery (0.5 ppb) for 5 checks ranged from 92 to 107%

• All CCB’s (5) were neg.

• No Perchlorate was found in CS “blanks” 5 samples

• Recovery of 1 ppb in “high matrix” for 30 samples averaged 90% with RSD or 6%

• Recovery of 0.5 ppb in college station water (5 samples) ranged from 90 to 106%
8uL vs 50uL injections of 0.95 ppb Perchlorate on a 3 mm id column
Armand Bayou surface water

30 ppt Perchlorate
Short term observations of using an ammonium formate/ acetonitrile buffer

• Retention behavior and peak shape for perchlorate is excellent
• Retention time for perchlorate appears to be independent of matrix
• Interference from organic material appears to be minimal
• Daughter ions at 83/85 can be used for confirmation
• Different injection sizes can be used to fit the needed detection limit
1 ppb Perchlorate extracted ion chromatogram