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Abstract. A combination of high-resolution ground verification, cluster analysis
using Landsat Thematic Mapper (TM) data, and optical modelling, was applied
to Red Sea reef substrate. Ground verification, in an area of 3 by 20 pixels (90 by
600m) with one metre scale resolution, identified the presence of 30 different
bottom types that were later reduced to twelve dominant bottom types. A combina-
tion of bispectral plots and principal component analysis using spectral bands 1,
2 and 3 confirmed the presence of nine bottom types. The identified clusters were
separated and used as a training set to classify substrate. Optical modelling, using
literature radiance values and coverage of the original twelve dominant bottom
types and a simple model for atmospheric and water column absorption, revealed
a difference of up to 60 Wm~™? between predicted substrate radiance and the
satellite sensor values in the reef top area. Considering the simple atmospheric
correction model, the lack of in situ radiance measurements and the uncertainties
with respect to possible changes in bottom type distribution since the acquisition
of the 14 year old image, the results show the potential use of satellite imagery for
reef research in both biological and geological analysis through very precise and
semi-quantitative ground verification, including in situ reflectance measurements.

1. Introduction

Coral reefs and the associated carbonate shelves have been mapped and surveyed
repeatedly for over 150 years. Reefs and associated sediments are an important
element in the carbon cycle. The ‘reef hypothesis’ of Quaternary climate change
attributes part of the increase in atmospheric CO, during deglaciations to extensive
fixation of marine calcium carbonate by reef growth during a transgression (Berger
1982, Milliman and Droxler 1996). In addition, these systems are highly specialized
and complex ecosystems that respond to changes in the environment. Of particular
concern is change by global warming (Glynn 1991) and by eutrophication from
agricultural fertiliser and sewage—a serious problem for island nations depending
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on reef fishery and coastal-plain agriculture (Hallock and Schlager 1986, Grigg and
Dollar 1990). Finally, reefs and associated sediments are highly porous and host
nearly one half of the world’s reserves of hydrocarbons and contain some of the
largest aquifers on Earth.

The introduction of remote sensing has provided information more efficiently
and at lower cost than conventional techniques in some application areas. Remote
sensing has been used for more than two decades in reef studies, particularly in the
context of regional documentation and reef monitoring for the preservation and
sustainable development of reefs (e.g. Smith 1975, Mani¢re and Jaubert 1985, Kuchler
et al. 1986, Luckovich et al. 1993, Peddle et al. 1995, Maritorena 1996, Maritorena
and Guillocheau 1996, Matsunaga and Kayanne 1997, Borstad et al. 1997a, b).
Although these published studies on coral reefs and associated sediments were only
partly successful in separating bottom types, they demonstrated the potential for reef
research and have shown that satellite imagery can provide quantitative, standardized
data that may play a pivotal role in both biological and geological analysis.

This paper presents the results of a comparative study of Landsat TM imagery
and ground verification of a Red Sea fringing reef system. The reefs of the Red Sea
constitute a 27 000 km? area which represents 4% of the world’s total reef area. A
brief description of the various bottom types was presented by Riegel and Piller
(1997). The coastline south of Hurghada to the Sudanese border is characterized by
fringing reefs with inlets, bays, offshore patch reefs and island reefs. South of Safaga
down to Ras Banas there is continuous, often well-developed fringing reef but the
continental shelf in this area is narrow and the seabed falls away rapidly preventing
the formation of offshore reefs. In situ data were collected 111 km and 113 km south
of the port of Quseir on the Egyptian Red Sea coast (figure 1). High-resolution maps
of the reef substrate were made and used to derive the distribution of dominant
bottom types on the reef top. This bottom type map was successfully calibrated with
the radiance values of the satellite image through cluster analysis. The resulting
training set was used for supervised classification of the satellite pixels. Finally, the
crude foundations for an optical model to simulate reef substrate radiance values in
the study area are presented. In the absence of in situ measurements with a portable
spectroradiometer and a dedicated library of accepted spectral signatures of reef
substrates collected under standardized conditions, the model was developed using
literature derived radiance values. The modelled radiance values were compared to
those of the normalized Landsat TM image and differences of up to 60 W m™ 2 were
observed.

2. Methodology and results

An inventory of morphology and living conditions of reefs and related sediments
on pixel-scale through ground verification, cluster analysis and optical modelling
required the following steps: (1) georeferencing of the satellite image and the sub-
sequent location of the study area within it; (2) high-precision ground verification;
(3) cluster analysis using bispectral and principle component analysis; (4) develop-
ment of an optical model to simulate the radiance of key bottom types, including
corrections for atmospheric absorption, solar elevation angle and water attenuation.

2.1. Study area and image matching
The study area is within scene ID list LT5173043008421110, acquired 29 July
1984. The limited budget allocated for the study dictated that only vintage (10-year
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Figure 1. A simplified map of the Egyptian Red Sea, with the study area shown on the coast.

and older) images could be purchased. It was accepted that during the fourteen years
that had elapsed between the satellite overpass and the completion of the fieldwork,
there may have been changes in the reef substrate and therefore we could have been
ground verifying a different ecosystem than the satellite data recorded. It was realized
that this lag time between satellite overpass and the ground verification exercise may
be a dominant factor influencing the comparison of the data sets. In general, a
pattern of shore-parallel banding on the TM image along the Red Sea coast is visible
(figure 2B and C). The study area was selected for the extended width of these bands
as well as for the ease of access to the reef top from the base camp.

Following the selection of the ground study pixels, Global Positioning System
(GPS) measurements were used to georeference the satellite image and to identify
the study pixels that were mapped on the ground in an area of 3 by 20 pixels (90
by 600 m) with a metre scale resolution. GPS measurements of nine control points
(three road junctions and six prominent headlands on the coast in close proximity
to the study area) were recorded for a period of 90 min, which should assure an
accuracy of 2m (Leavitt and Payton 1996). Simple mathematics were used to identify
the pixels on the satellite image using the latitude and longitude values of the image
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Figure 2. (A) Map showing study area. (B) Grey shaded 20 by 101 pixels Landsat TM image
(bands 1, 2 and 3) equivalent to the study area in (A); the highlighted box represents
the ground-truthed pixels. (C, D, E, F) Grey shaded 20 by 3 pixels Landsat TM image
of composite and separate bands 1, 2 and 3 respectively, corresponding to the pixels
highlighted in (B).

extent as extracted from its header file as reference points with which to convert
latitude and longitude to pixel X and Y co-ordinates. The predicted pixel co-ordinates
of the nine control points were shown to have a small common offset, which was
added to the derived pixel X and Y co-ordinates, the result being that the ground
control points identified in the field could now be identified on the image. The image
was also rectified to a Universal Transverse Mercator (UTM) projection of the US
Geological Survey (USGS) zone 36. The UTM co-ordinates of the four corners and
the centre point of the image were taken from the header file and entered along with
the nine control points recorded in the field, into the desktop image processing
software, ER Mapper 6.0. The maximum root-mean error (RME) was calculated to
be 15.39m. The resulting rectified image was used to re-confirm the accurate posi-
tioning of the in situ ground-truthed study area. Following standard routines (e.g.
Richards 1986), the DN (digital number) values of bands 1, 2 and 3 were converted
to radiance. The transformation is based on a calibration curve of DN to radiance,
which has been calculated by the operators of the satellite system. The calibration
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concerns the bias and gain of the sensor, the gain represents the gradient of the
calibration and the bias defines the spectral radiance of the sensor for a DN of zero.
Bias and gain values for each band are supplied with the image and take into account
when the image was processed, as the accuracy of the satellite declines as the
sensitivity of the sensor changes over time. The calibration is given by the following
expression for ‘at-sensor’ spectral radiance, Lt W m™ 2 str™ ! ym™ ! (for Landsat).

Li=Bias+(Gain x DN) (1)

The converted radiance values for the pixels corresponding to the ground-truth area
are plotted using a grey scale in figures 2C, D, E and F. Archive tidal data for the
area was obtained from Nautical Software Inc. (Beaverton, Oregon) and used to
determine that on 29 July 1984 at 09:36 local time, the depth was 0.58 m above low
water datum. Repeated measurements at the study site using a graduated pole
identified the position of the low water datum on the reef. The submergence depth
of the reef top at the time of the satellite overpass could then be calculated by
combining the in situ measurements and the archive tidal data.

2.2. Ground verification

In situ data were collected on a 600m x 90 m section (3 x 20 Landsat TM pixels)
of coral reef top between the shoreline and the reef crest (figur 2B). A rope quadrant
(I5m x 15m) was used which was moved along the pre-determined transect and
matched to the pixel columns of the satellite image (figure 3).

The various bottom types of the reef top were mapped using 5m x 5m rope
subdivisions of the main quadrant. A plastic slate with a ready prepared pixel grid
and a list of recognized bottom types was carried by each mapper and the substrate
boundaries were drawn onto the slate and labelled; this process was continued over
the reef crest to 25 m water depth using SCUBA diving equipment. To ensure that
accurate mapping of the reef had been carried out, several pixels were re-visited and
re-mapped.

Figure 3. Photograph of the bottom types being mapped on the reef top using the rope
quadrant.
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Primary criteria for discriminating between bottom types were type and percent-
age coverage of red, green and brown algae, seagrass or coral on the background of
mostly mixed and fine-grained carbonate sand. Initial mapping of the reef top in situ
yielded 30 distinct bottom types (figures 4A-B and 5A-F). Data reduction was
accomplished following two criteria. First, the groups were formed by similar domin-
ant spectral response based on previous works (Armstrong 1993, Zainal et al. 1993,
Maritorena et al. 1994). Second, the bottom types were combined based on their
association with neighbouring groups. As a result, twelve dominant bottom types
remained (figure 4B and table 1). Next, the percentage of each of the twelve bottom
types present in each pixel was calculated via standard image analysis techniques
using the geographic data processing software, Idrisi 2.00.

2.3. Cluster analysis and supervised classification

Since the presence of water on the reef top, which absorbs near infra red light,
dominates the signatures in bands 4 to 7, only the first 3 bands (i.e. blue, green and
red) were considered in the analysis that follows. As the fieldwork took place prior
to imagery analysis, the determination of the number of bottom classes mapped on
the reef is independent of the apparent classes on the image. The analysis in this
way contains an element of supervised classification because ground measurements
are used to classify the image, but also unsupervised classification as the bottom
type classes derived from the field survey do not necessarily relate to the classes
identified on the imagery. To reveal relationships between bottom types and radiance,
bispectral plots as well as principle component analysis (PCA) was applied.

Provided that there was good discrimination between the spectral bands, it was
expected that the pixels would form groups corresponding to different bottom types,
the size and shape of these groups depending upon the density of cover type,
systematic noise and bathymetric effects. Bispectral plots of the radiance values
revealed relationships in multispectral space including clustering of bottom types
and the effects of bathymetry (figures 6A and 6B).

PCA has been used effectively in many studies as a data reduction technique and
as a means to identify modes of data. PCA, in conjunction with other techniques
was used by Holden and LeDrew (1997) to make a spectral discrimination of
bleached and healthy submerged coals. The principal components analysis indicated
that 97% of the variance of the three bands occurs along the first PC axis, with
negligible variance along axes two and three. By plotting the PCs of the second and
third axis against the first, the clustering of pixel points was obtained (figures 6C
and 6D). The principal components yielded the same number of clusters as the
bispectral plots but their association differs in two cases, implying that bispectral
and PCA plots have a similar capacity for resolving clusters of pixels.

Initially twelve bottom type classes were identified during the survey (table 1)
and the data were analysed to give the percentage cover of each of the coverage
classes. The purest pixel on the image associated with one of these classes was then
geolocated and isolated. The radiance and PC ordinates of the pure pixels were then
estimated in both bispectral and PCA plots. In order to distinguish the pure pixels
they were re-plotted with a diamond symbol (figure 6). The majority of the previously
defined clusters became associated with a pure pixel end-member, and thus they
could be classified. With the addition of the pure end-members to the plots the
clusters were re-defined by resolving digitally the maximum and minimum band 1
(x-axis) and band 2 or 3 (y-axis) values in the bispectral plots. The boundary
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Figure 5. Photographs showing examples of initial substrate coverage categories. Back-
ground is mixed siliciclastic and carbonate sand. (a) Laurencia type assemblage of
green algae; less than 30% in plan view. (b) Approximately 60% Champia parvula.
(c) Caulerpa racemosa; more than 80% in plan view. (d) Between 30% and 50%
coverage of Cladophora. (e) Between 60% and 80% coverage by Cymodocea seagrass.
(f) Carbonate sand with less than 10% coral coverage in 22 m of water.

co-ordinates of each cluster were modified to list all pixel co-ordinates which lay
within the limits. When clusters in close proximity to each other were found to have
common pixels, the cluster boundaries were re-defined until no pixels were common
to more than one group. All the clusters were then allocated an identification code
and were defined according to the origin of the pure pixel end-member with which
they seem to be associated. Those clusters not related to any pure pixel were
considered unclassified (see table 2).

The bispectral plots of band 1 against band 2 (referred to as B2-1) and band 1
against band 3 (referred to as B3-1) show a clear distinction of the deep water cluster
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Table 1. The 12 dominant bottom types recorded during in situ ground verification.

No. Class of ground truth
1 Sand
2 Black rock
3 <30% Green algae
4 30-60% Green algae
5 >60% Green algae
6 <30% Brown algae
7 30-100% Brown algae
8 Seagrass <60%
9 Seagrass >60%
10 Algal mats <60%
11 Algal mats >60%
12 Deep water
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Figure 6. (A) Bispectral plot of radiance in TM band 2 versus band 1. (B) Bispectral plot of
radiance in TM band 3 versus band 1. (C) Scatter plot of PC 2 versus PC 1. (D)
Scatter plot of PC 3 versus PC 1. The boxes represent the maximum and minimum
values of the pixels in each cluster.
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Table 2. The 14 clusters identified by bispectral plots and PCA, and their classification after
the addition of pure pixels from the ground verification.

No. Cluster classification Cluster identification code
1 Deep water A
2 Coral/algal mats >60% Bi
3 Coral/algal mats <60% Bii
4 Brown algae <60% C
5 Unclassified Di
6 Unclassified Dii
7 Unclassified Diii
8 Seagrass < 60% Ei
9 Unclassified Eii

10 Seagrass > 60% F

11 Green algae <60% G

12 Green algae >60% H

13 Sand I

14 Unclassified J

(figure 6A and B). The separation is optimum in B3-1, which also separates most
effectively the two densities of coral with algal mats. B2-1 exhibits the tightest
clustering of the three unclassified groups D(i), (ii) and (iii), although distinction
between them is easier in B3-1. Both band plots resolve seagrass <60% into an
end-member classified group situated between four unclassified groups. The splitting
of the seagrass >60% and green algae <60% is best in B3-1, however, not to the
extent offered by the principal components plot of PC3-1 (figure 6D). The position
of the sand cluster in B2-1 is unique in the sense that it is not at the extreme end of
the clusters, but instead it is located between two clusters of green algae and one of
seagrass (clusters F, G and H respectively). Clearer definition between sand and
chlorophyll containing substrate is offered with the bispectral plot of B3-1 than with
B2-1 as the responses in the red—blue portion of the visible spectrum are being
considered. Chlorophyll predominantly absorbs energy of the red portion of the
spectrum and has a reflectance maximum in the green, therefore the bispectral plot
that contains information from TM band 3 (i.e. B3-1) should give improved discrim-
ination between chlorophyll and non-chlorophyll containing substrates, than a plot
of B2-1 (wavelengths corresponding to the green portion of the spectrum against
blue). This explains the more distinct discrimination between sand, and the algal
and seagrass clusters using plot B3-1, than with B2-1.

PCA provides a method for confirming the interpretation of the radiance made
above. The main result of PCA is that one extra cluster has been revealed which
was not recognizable in the bispectral plots. As with the bispectral plots, the PCA
graphs (figure 6C and D) give excellent discrimination of deep water, as well as
between the unclassified groups D(i), (ii) and (iii). The plot of PC2-1 provides the
clearest distinction between the two coral with algal mat densities and is unique in
only resolving the classified E(i) cluster group (i.e. seagrass <60%) but with the
unclassified E(ii) being absent. Despite this omission, the PC2-1 plot is characterized
by the description of the extra unclassified group J not observed in the PC3-1 graph.
The fact that a new cluster has been resolved via the application of PCA confirms
that the technique is valuable if maximum information is to be drawn from the data
set. Both PCA plots give a clear separation of the cluster group associated with
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sand. Additionally PCA further facilitates the distinction of pixels containing coral
with algal mats or brown algae.

Since the boundaries of the nine ground verified clusters were now defined in
terms of their radiance values in the first three bands, the satellite pixels were
classified using bispectral plots and PCA (figures 7B and C respectively). The satellite
pixels were then re-classified using only the six major classes of bottom type for the
bispectral plots and PCA (figures 7D and E respectively).

Both ‘supervised’ classification models show a clear zonation of bottom types
that are easily identified on the simplified substrate map with twelve dominant group
types (figure 4B). Clearly, un-identified mixtures of bottom types were not used in
this classification. There are slight differences in the results of classifying the satellite
pixels of the study area using the cluster limits defined by the bispectral and PCA
plots. The differences in most cases, are revealed to be related to variations in the
classification between pixels of the same substrate but at different concentrations.
When the nine substrate types recognized using the bispectral and PCA plots are
reduced to six types by grouping substrates at different densitities into a single
heading, the classifications become more similar (figures 7D and E). Classification
using the PCA plots gives three pixels dominated by sand, whereas with the bispectral
data, only one is revealed. The mid section of the reef is classified in both cases as
being composed of green algae and seagrass, although the bispectral data shows the
occurrence of green algae to be higher, and beyond pixel row 14 classification is
identical.

2.4. Optical model

With the field data of the northern reef top transect having already been broken
down from 30 bottom type categories to a more manageable twelve (figure 4), a
prediction of their spectral signatures could be made for comparison with the Landsat
imagery. A hand-held spectroradiometer that could measure the spectral response
of bottom types in each of the TM bands was not available at the time of the
fieldwork. Instead, by combining the spectral measurements carried out by
Maritorena et al. (1994) in French Polynesia with those of Armstrong (1993) in the
Bahamas, representative spectral characteristics of sand, green algae, brown algae
and seagrass could be applied to the fieldwork of the Red Sea. Maritorena et al.
(1994) used a LiCor LI-1800 UW spectroradiometer (spectral resolution ~8nm) to
measure the upwelling radiance of various bottom substrates within the Takapoto
atoll of French Polynesia. Sites of the homogeneous bottom cover were selected,
within the proximity of the deep zone. The data collected by Maritorena et al. were
considered the most appropriate to be applied to the data collected in the Red Sea
study, as the measurements were made on cloud-free days with calm seas under high
solar elevation. These criteria are equivalent to the prevailing conditions of the Red
Sea during July (month of satellite overpass). Six reef substrates were measured, with
an appropriate correction to account for any air—water interface reflection; coral
sand, the green algae Boodlea, the two brown algae’s Sargassum and Turbinaria and
the two red encrusting algae’s P. ankodes and Corallinacea.

The study of Maritorena et al. (1994) did not provide information on the
upwelling radiance of seagrass. An estimate for the spectral response of seagrass was
taken from work carried out near Lee Stocking Island in the Bahamas by Armstrong
(1993). Unlike the work in French Polynesia, Armstrong (1993) did not make spectral
measurements in situ but instead collected samples and processed them later in the
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Figure 7. (a) Grey shaded 20 by 3 pixels Landsat TM image of composite bands 1, 2 and 3.
(b) Classified substrate map for the 20 by 3 pixel study area using cluster dimensions
from bispectral plots. (¢) Classified substrate map for the 20 by 3 pixel study area
using cluster dimensions from PCA plots. (d) Classified substrate map for the 20 by 3
pixel study area using cluster dimensions from bispectral plots further reduced to the
six major substrate types. (e¢) Classified substrate map for the 20 by 3 pixel study area
using cluster dimensions from PCA plots further reduced to the six major substrate
types.
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day using a Spectron SE590 spectroradiometer with an integrating sphere. It is
appreciated that too many assumptions were taken by using spectral measurements
acquired from diffeernt geographical areas, without corrections being applied to
compensate for the differing atmospheric and solar geometry conditions, using equip-
ment with dissimilar spectral bandwidths and radiometric resolutions, to make a
viable comparison of actual radiance values. The object of the exercise was not to
create a fully functioning optical model with which to simulate the true spectral
signatures of reef substrates in the Red Sea. Instead, the exercise was considered as
a preliminary study with which to assess the value of a second phase of fieldwork
during which actual radiance values of reef substrates would be collected in situ
using a portable visible and near infrared spectrometer.

By combining the spectral measurements carried out by Maritorena et al. (1994)
in French Polynesia with those of Armstrong (1993) in the Bahamas, representative
spectral characteristics of sand, green algae, brown algae and seagrass could be
applied to the field work of the Red Sea. Spectral signatures for the algal mats which
are characteristic of the outer limits of Red Sea reefs and the black beach rock which
divides the beach from the reef top could not be found in the literature. The beach
rock only contributes to three pixels of the total area studied, and was presumed to
give low radiance values in the visible TM bands. The algal mats on the reef top
were predominantly brown in colour and so were considered to have a similar
spectral response to that of brown algae.

The spectral signatures recorded by Armstrong (1993) and Maritorena et al.
(1994) were used to estimate the expected radiance values for sand, green and brown
algae and seagrass in TM bands 1, 2 and 3 (table 3).

With estimated percentage reflectance values for sand, green and brown algae
and seagrass, the literature data could be used to estimate radiance values for the
twelve bottom categories identified in the fieldwork. This was carried out by estimat-
ing the composition of the field classes in terms of proportions of the literature
derived radiance measurements. Having deduced estimates of the spectral signatures
for each of the twelve field categories, a model of hypothetical radiance values in
the first three TM bands was generated (table 4).

In order to compare the satellite radiance values to those of the optical model
the satellite image was normalized by applying corrections for the following effects:
atmospheric scattering, solar elevation angle, and water attenuation (table 5). A
simple method of atmospheric compensation in multispectral data is to observe the
radiance recorded over target areas of essentially zero reflectance, e.g. far out at sea.
Any signal observed in such an area represents the additive path radiance and, in
this case, this value (average of 20 selected pixels) was substracted from all pixels in
that band of the satellite image to remove scattering effects. Using such a method

Table 3. Estimated radiance values (W m~2) of bottom substrates derived from measure-
ments by Armstrong (1993) and Maritorena et al. (1994) in Landsat TM bands 1-3.

Substrate Band 1 Band 2 Band 3 Source

Sand 37.7 49 57 Maritorena et al. (1994)
Green algae 11.3 24 12.8 Maritorena et al. (1994)
Brown algae 3.7 10.2 7.3 Maritorena et al. (1994)

Seagrass 5 12.6 7.7 Armstrong (1993)
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Table 4. Estimated radiance values (W m~?) for the 12 bottom type categories identified in
the fieldwork, using measurements by Maritorena et al. (1994) and Armstrong (1993).

No. Class of ground truth Band 1 Band 2 Band 3
1 Sand 38 49 57
2 Black rock 0 0 0
3 <30% Green algae 30 42 44
4 30-60% Green algae 22 34 30
5 >60% Green algae 11 24 13
6 <30% Brown algae 28 37 42
7 30-60% Brown algae 19 26 27
8 Seagrass <60% 18 42 27
9 Seagrass >60% 5 13 8

10 Coral/algal mats <60% 10 21 12

11 Coral/algal mats >60% 5 13 8

12 Deep water 0 0 0

Table 5. Corrections for water column and atmospheric effects for the first three Landsat

TM bands.
Landsat Wavelength Range k; (m™ 1) Mean k;  Atmospheric scattering
TM band (nm) literature sea water (m™1) correction (W m™ ?)
1 Blue 450-520 0.01-0.03 0.02 54.14
2 Green 520-600 0.07-0.1 0.085 30.40
3 Red 630-690 0.45-0.78 0.62 20.16

for atmospheric correction does not take into account any inhomogeneity of the
atmosphere that may exist over the image. Since at this stage we are only concerned
with a very limited section of the image that relates to the study area, it was deemed
that a simple atmospheric correction was sufficient. A more powerful correction
would be employed if the method were to be expanded to model larger areas of reef,
though this is out of the scope of this paper.

The Sun elevation correction accounts for the seasonal position of the Sun
relative to the Earth. The Sun elevation angle at the time the Landsat TM image
was acquired was 60.22°. To convert the Landsat TM pixel elements to a similar
solar illumination angle we use the following equation:

E,=E,/sin 0, (2)

where 0, is the solar elevation angle, E, is the uncorrected digital number of each
pixel element, and E, is the corrected radiance value of each pixel element. The solar
elevation angle is 60.22°. An Earth—Sun distance correction to normalize for seasonal
changes in the distance between the Earth and the Sun was not applied here as no
in situ spectroradiometric measurements were made.

A simple but effective model of light absorption by water is given by:

Ey=E,—e¢ 2% (3)

where E; =digital number in band i that would be recorded from the wet sea bottom
if there were no water overlying it; E, = digital value recorded for a picture element
in band i; k=absorption coefficient of water in band i; z=water depth.

The only unknown is E; as values for the absorption coefficient for the different
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wavelengths, k;, for clear tropical water were taken from the literature, E, are the
digital numbers from the satellite image, and z is known. Various authors have
published absorption coefficients for clear tropical water; see, e.g., Maul (1985),
Shifrin (1988), Spinrad et al. (1994), and Maritorena and Guillocheau (1996). Water
column absorption has a negative effect on the synthetic digital numbers. The
difference between the radiance values of the data modelled using literature spectral
measurements and percentage cover of each of the twelve coverage classes, and those
of the normalized satellite image were plotted as a series of graphs for each pixel
row across the reef top for the first three Landsat TM bands (figures 8A, B and C
respectively).

The graphs reveal differences between 0 and 60 W m™ 2. In the shallow reef top
area, differences are of the order of 10 to 20 W m™ 2 for band 1 and 20 to 30 W m~ 2
for bands 2 and 3. The pixels closest to the division between the exposed beach and
the start of the submerged reef top show the greatest differences in radiance values
(20 to 60 W m™2). The large discrepancy between the modelled and normalized
values in this area can be attributed to the fact that this section of the reef is
dominated by mixtures of black Pleistocene beach rock, pebbles and brown algal
mats. The literature only provided estimates of radiance values for brown algae, and
so the modelled data were calculated assuming that this area was completely covered
by this bottom type. Such examples highlight the need for either in situ measurements
of radiance, or the development of a spectral library of reef substrate spectral
signatures, if the model is going to be further developed. In contrast, the deeper
water zone reveals small differences in the region of 0 to 10 W m™ 2 for all bands.
Both the modelled and the normalized satellite data show a trend of decreasing
radiance values across the reef top from pixel numbers 1 to 20. With the knowledge
that submergence depth is constant across the first 17 pixels of the study area
(figure 4), this suggests that the geomorphological and ecological zonation that exists
on the reef top due to such factors as gradients in wave exposure, is represented by
a decrease in radiance value from the shoreward to the seaward side. There is a
pronounced drop in radiance in TM bands 2 and 3 (figure 8B and C respectively)
between pixel numbers 17 and 20, which can be attributed to the rapid increase in
water depth associated with crossing the reef break and the onset of the reef slope.

3. Discussion
3.1. Ground verification methodology

Published studies on coral reefs and associated sediments using satellite images
were only partly successful in separating bottom types (Smith 1975, Kuchler et al.
1986, Luckovich et al. 1993, Peddle et al. 1995, Maritorena 1996, Maritorena and
Guillocheau 1996, Matsunaga and Kayanne 1997, Borstad et al. 1997a, b). The best
comparison study to that of the project was carried out by Luckovich et al. (1993)
in the Dominican Republic. In general, several factors can be suggested to explain
the limited success in discriminating bottom type categories with characteristic
radiance values: (1) insufficient resolution and quantification of substrate mapping;
(2) mapping of dominant rather than all species characteristic of bottom types;
(3) changes in substrate coverage between acquisition of satellite image and survey
(Michalek et al. 1991, Wagner et al. 1991); (4) the effect of variable water depth on
the radiance characteristics of bottom types.

It is obvious that the above factors greatly affect the quality of the calibration
between remotely sensed radiance and actual bottom type distribution. In the study
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carried out by Luckovich et al. (1993), most ground-truthed pixels were submerged
under ~3m of water, whereas in this project water depth on the reef top was 0.7m
and fairly constant (4 0.3 m). Evidence from Zainal et al. (1993) suggests that submer-
gence can cause some habitats to become spectrally similar. In particular, classifica-
tion becomes difficult between seagrass and deep water and between seagrass, corals
and algae (i.e. optically dark habitats) in areas greater than 5 m depth; the problem
was also reported by Ackleson and Klemas (1987) and Vousden (1986). It is import-
ant to have detailed bathymetric data and reliable knowledge of the tidal cycle of a
study area, if satellite radiance values are to be used to interpret reef bottom types.

The following methods to address the interpretation of satellite imagery, and
specifically the problem of bathymetry, are proposed for future research. In areas
with constant bottom type, usually seaward of the reef wall in water depths of
typically 10 to 25 m, bathymetry can be estimated from blue—green wavelengths and
calibrated with depth soundings. Studies in the Bahamas and offshore Cuba, indi-
cated a penetration of blue—green wavelengths in clear water up to 20m (Gordon
and Brown 1974, Lyzenga 1978, 1981, Paredes and Spero 1983, Clark et al. 1987,
Philpot 1989, Harris and Kowalik 1994), which is also the critical depth for reef
growth (Bosscher and Schlager 1992). Algorithms for water depth mapping in coastal
areas using satellite imagery were developed by Lyzenga (1978) and Parades and
Spero (1983). Van Hengel and Spitzer (1991) stated that the reliability of the
computed water depths depends to a considerable extent on the accuracy of the
known water depth data used to calibrate the algorithms. In cases where accurate
calibration data on the depth are not available, a method such as the one presented
by Lyzenga (1978) can be used as an assessment of relative water depths. This
method is based on an assumed linearity of the water depth with the first principle
component of the logarithms of the detected signals within the spectral bands of the
satellite sensors. The absolute water depths can then be computed through calib-
ration, applying several reference points where the true depths are known (Van
Hengel and Spitzer 1991). In shallow water areas, less than 10 m (dominant depos-
itional environment) with sufficient bottom currents (larger than 0.5ms™ 1, e.g
Bahamas), ESA’s (European Space Agency’s) SAR imagery, calibrated by depth
surroundings, could be used to estimate water depth. Recent investigations have
shown that sea surface roughness, imaged by radar, is a function of the friction of
the water column with the sea floor, and is a valid proxy for bathymetry with a
resolution within 0.5m and to a depth of 20 m (Valenzuela et al. 1983, Alpers and
Hennings 1984, Maniére and Jaubert 1985, Harris et al. 1986, Vogelzang 1989,
1997a, b, Calkoen et al. 1993, Cooper et al. 1994). In areas of both variable water
depth and bottom type, that lack sufficient current, only depth soundings or accurate
bathymetric maps can solve the interpretation of the satellite radiance values in
terms of substrate coverage. If reef substrates are going to be classified over wide
areas, such as along the extent of an image, the development of a linear slope model
of submergence depth on the reef top would be invaluable. This would be used to
correct for the difference in tidal heights encountered when considering a large
stretch of coastline.

3.2. Optical model

The optical model (figure 8) shows deviations of up to 60 Wm™2 in TM bands
1, 2 and 3 in the extreme shoreward area of the reef top when compared with the
normalized satellite image. Such deviations are to be expected, considering the simple
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Figure 8. A series of graphs to show the difference between radiance values of the data
modelled using literature spectral measurements and percentage cover of each of the
twelve coverage classes, and those of the normalized satellite image. There is a plot
for each pixel row across the reef top for Landsat TM bands 1-3 (a, b and ¢
respectively).

algorithms used for atmospheric scattering, solar elevation angle, and water attenu-
ation and the assumptions made when using radiance values from the literature.
In addition, the satellite image is 14 years old and modifications in substrate distri-
bution may well be expected over this period of time (Michalek et al. 1991, Wagner
et al. 1991).

The optical response of reef substrates relies on a number of additional factors.
The in vitro spectral albedo for macro-algae reflects the specific pigment composition
of each taxonomic group (Maritorena and Guillocheau 1996). For example the green
algae Boodlea sp. exhibits a prominent reflectance maximum at 550 nm (TM Band
2). This maximum corresponds to the green portion of the visible spectrum, which
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is not strongly absorbed by chlorophyll. In addition the green algae shows distinct
depressed reflectance values below 500nm and around 675nm (bands 1 and 3
respectively) which is characteristic of chlorophyll presence (Maritorena et al. 1994).
The albedo of brown algae remains uniformly low throughout the spectrum with
maximum values observed in the 570-650 nm domain (TM bands 2 and 3), result-
ing from the strong absorption by fucoxanthin and carotene (Maritorena and
Guillocheau 1996), Since, in contrast to the green algae, brown algae is deprived of
distinctive signatures within the spectral domain of penetrative radiation (< 580 nm),
separation between these two algal types should be possible on a Landsat image.
The red algaes have a double peak at 600 nm (limit of TM band 2), and 650 nm
(band 3). In band 1 albedos are above those of green and brown algae. The pattern
is the result of the pigment phycobilin which depresses the albedo in the green part
of the spectrum. Luckovich et al. (1993) stated that seagrass has a greater radiance
than coral cover in Landsat bands 1, 2 and 3, although the mean radiance of seagrass
and coral reef did not differ significantly in any band after analysis of variance and
multivariate analysis of variance.

The albedo of highly reflective calcium carbonate debris is high, but dependent
on submergence depth (Maritorena and Guillocheau 1996). When sampled in
emerged zones, and therefore free of microphytobenthic organisms, such as cyano-
bacteria and diatoms, the albedo follows a smooth increase from short towards long
wavelengths (i.e. increase from bands 1 to 4). Alternatively, once submerged the
associated microphytobenthos would have a marked effect on the albedo. Despite
this, Maritorena (1994) showed that a sandy bottom as deep as 15m has a distinct
signature that gives rise to reflectance values double that of R, (i.e. reflectance of
the infinitely deep ocean). The data from the reefs of French Polynesia indicated
that the reflectance of coral sand when measured at zero depth is greatest from
400—-600nm (bands 1 and 2), with increasing depth serving as to decrease reflectance
above 600nm (band 3). The work of Armstrong (1993) and Maritorena and
Guillocheau (1996) showed carbonate sand to have a higher albedo than any seagrass
or algal substrate in Landsat bands 1, 2 and 3. Armstrong (1993) demonstrated that
at <710nm, the albedo of seagrass exceeds that of sand: this was not observed in
any algae by Maritorena and Guillocheau (1996). In the work carried out by
Luckovich et al. (1993) in the Dominican Republic, sand had significantly greater
radiance than seagrass or coral in Landsat Band 1, resulting from small-scale patchi-
ness. They stated that sand areas could be mapped efficiently using Landsat TM.

All of the at-sensor radiance values of the bottom substrates increase in the near
infrared domain, however, the extreme attenuation of infrared wavelengths in water
precludes their use in substrate detection using Landsat data. With the exception of
submergence depth, it appears that the dominant factor controlling the predictability
of a cluster’s composition is its standard deviation. Clusters with a high standard
deviation require the addition of ground verified field data in order to identify the
bottom substrates that each pixel contains, and therefore the mixture of bottom
types that each cluster represents. This suggests that Landsat imagery is sufficiently
sensitive to discriminate between seagrass and other types of green algae as repres-
ented in the wide spread of radiance values around the pure green algae pixel. If this
is the case then Landsat TM has much wider applications to the mapping of reef
substrates than have been reported in the literature. When used with the appropriate
cluster analysis techniques calibrated by in situ measurements Landsat TM can be
sensitive enough to distinguish between different types of optically similar substrates,
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such as between green algae and seagrass, and between brown algae and algal mats.
Identification of different density substrates might also be possible, but given the
heterogeneous nature of the reef top this is hard to verify because it is difficult to
find pixels containing only one bottom type at constant density. The addition of the
field data has also reaffirmed that bispectral and principal component techniques
both have the ability to resolve satellite radiance values into clusters. Although both
techniques yield the same number of clusters, the type of clusters differ between
components and bispectral plots. Therefore the use of both techniques is advisable
if the optimum amount of information is to be drawn from the data. Despite the
fact that the analytical techniques have been successful when applied to the image
of the project, we cannot conclude that the techniques could be expanded to estimate
reef coverage over large areas without repetition of the study in another region using
different images.

4. Conclusions

In the absence of a training set of ground-truth data, it was found that by
applying bispectral and principal components plots of satellite radiance, pixels corres-
ponding to sand and deep water could be recognized. The addition of pure pixels
from the ground-truth data was used to characterize the clusters produced by the
bispectral and principle components plots, 14 bottom type categories were defined,
of which nine were immediately distinguishable from the training set. The field record
then provided a mean substrate coverage for each cluster, with the result that the
cluster categories were found to be composed of a mixture of various substrate
densities with contamination from optically similar bottom types. The clusters which
remained unclassified after the addition of pure pixel end members consisted of green
and brown algae mixtures with contamination from seagrass, as predicted by their
position on the bispectral and principal components plots.

The basis for an optical model to simulate the radiance of ground-truth data
was then developed, which can benefit from the addition of a more stringent method
of atmospheric correction and more advanced algorithm to simulate the attenuation
of radiance in the visible band by water. A fundamental weakness of the model is
the lack of accepted spectral at-surface radiance values for different substrates in the
literature. This confirms that the use of a portable spectroradiometer which can
measure at-surface radiance values in the visible and near-infrared (analogous to the
range of the first four Landsat TM bands), or spectral signatures from a dedicated
library of reef substrate optics, would provide invaluable data that could be incorpor-
ated into an improved optical model. Another weakness that could be resolved is
the problem of varying submergence depth. In shallow areas with constant water
depth, bathymetry can be assumed constant. In areas with sufficient current, synthetic
aperture radar (SAR) data can be used as a proxy for bottom topography. In areas
with constant bottom type, variable water depth and insufficient current, blue and
green light absorption is a means for estimating bathymetry using Landsat TM
imagery. Where both bathymetry and substrate vary, depth soundings or accurate
bathymetric maps are needed. With these modifications, the optical model holds the
potential to be implemented as a valuable predictive tool in order to simulate the
upwelling radiance of different bottom types.

We view this research as a valuable preparatory step for reef mapping from other
moderate resolution satellites such as Landsat 7 which was launched successfully in
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April 1999. Unlike the previous Landsat satellites, Landsat 7 offers a spatial reso-
lution of 15m provided by an additional panchromatic channel. IRS, the Indian
Remote Sensing Satellite program covers the green, red and near infrared portion
of the spectrum with a spatial resolution of 23.5 m, resampled to 20 m. The successful
launch of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radio-
meter) was accomplished in December 1999. ASTER provides a ground resolution
of 15m in the visible and near infrared portion of the spectrum. The instrument will
become extremely valuable for the continued effort to develop techniques whereby
remote sensing can be used as a tool to detect reef substrates, when global data
coverage is achieved in the near future.
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