Aqueous Film Forming Foam (AFFF) ENVIRONMENTAL IMPACT REVIEW

Bill Ruppert

Background: AFFF Constituents

- MILSPEC based on Performance, not Constituents
- Must be on Qualified Products List QPL
- Main Ingredients in Firefighting Strength Foam:
 - WATER = 98% 99%
 - Butyl Carbitol (Glycol Ether) = 0.5%-1.1%
 - Fluorosurfactants & Hydrocarbon Surfactants = 0.03%–0.45%
 - Ethylene Glycol (Not in all formulations) = 0.34%-0.60%
 - Urea (Not in all formulations) = 0.2-0.4%

Background:

AFFF 'Environmental' Properties

MIL-F-24385F Requirements

- Chemical Oxygen Demand
 - 3% Concentrate 1,000,000 mg/L Max
 - 6% Concentrate 500,000 mg/L Max
 - Calculated Firefighting Strength ~ 30,000 mg/L Max
- Biochemical Oxygen Demand (20 Day)
 - =(0.65 X COD) or greater
- Aquatic Toxicity (LC50, Killiefish)
 - 3% Concentrate 500 mg/L Min
 - 6% Concentrate 1000 mg/L Min
 - Calculated Firefighting Strength ~ 16,667 mg/L Min
- Persistence and Bioaccumulation
 - Only Fluorosurfactants Not in other constituents
 - example: Butyl Carbitol log BCF = 0.46

Background: AFFF Properties MILSPEC vs. Typical QPL Product

Property	MIL-F-24385F Requirements			Typical QPL Product		
	3%	6%	FF	3%	6%	FF
Chemical Oxygen Demand (mg/L)	1,000,000 Max	500,000 Max	30,000 Max	750,000	341,000	22,500
Biochemical Oxygen Demand (mg/L)	BOD ₂₀ > 0.65 x COD			720,000 (0.96*COD)	274,000 (0.80*COD)	21,600
Aquatic Toxicity (Killiefish) (mg/L)	500 Min	1000 Min	16,667	>1000	>1000	>16,777 or >33,333

Codes and Standards Survey Approach

- Electronic Review
- Federal Environmental Regulations
 - "AFFF"
 - MILSPEC AFFF Constituents (19)
 - Surfactants
 - Fluorosurfactants
 - Glycol Ethers
 - Urea, etc.
 - AFFF "Environmental" Properties
 - Biochemical And Chemical Oxygen Demands
 - Aquatic Toxicity
 - Foaming
- DOD, State And Local Regulations
 - "AFFF"
 - MILSPEC AFFF Constituents

Codes and Standards Survey Federal Environmental Regulations

- Clean Air Act (CAA)
 - Air Emissions
 - Air Discharge Permits
- Emergency Planning and Community Right-to-Know Act (EPCRA)
 - Toxics Release Inventory (TRI)
 - Chemical Storage and Use
- Comprehensive Environmental Response, Compensation, & Liability Act (CERCLA)
 - Superfund Amendments and Re-authorization Act (SARA)
 - Spills and Clean-up Of Spills
- Resource Conservation and Recovery Act (RCRA)
 - Hazardous Waste
- Safe Drinking Water Act (SDWA)
 - Regulates Contaminants in Treated Drinking Water
- Clean Water Act (CWA)
 - Water Discharges
 - Water Discharge Permits

Federal Environmental Regulations Results

- Clean Air Act (CAA)
 - Glycol Ethers In AFFF Are Hazardous Air Pollutants (HAPs)
 - HAP Releases Are Regulated by the Installation Air Permit
 - Major Sources for HAPs Might Have Potential Permit Issue
- EPCRA and TRI
 - Glycol Ethers are Covered Because CAA Defines them as HAPs
 - Chemicals Released Above a Reportable Quantity (RQ) Must Be Reported
 - Default RQ was One (1) Pound
 - EPA Established a No RQ
 - AFFF Discharges Do Not Currently Need to Be Reported Under EPCRA and TRI
 - Ethylene Glycol Specifically Listed
 - No Other Constituent is Currently Regulated by EPCRA and TRI

Federal Environmental Regulations Results

- CERCLA and SARA
 - Glycol Ethers are Covered Because CAA Defines them as HAPs
 - Glycol Ethers May Need to Be "Cleaned Up" After a Spill
 - Air Pollutants So Expected to be Volatile
 - Are not volatile when mixed with water
 - Biodegradable So Might Be "Cleaned Up" Naturally
- Resource Conservation And Recovery Act (RCRA)
 - AFFF and Its Constituents are Not Classified as Hazardous Waste
 - RCRA Does Not Apply
- Safe Drinking Water Act:
 - Primary Drinking Water Regulations (Health Properties)
 - Does not regulate AFFF or its constituents
 - Secondary Drinking Water Regulations (Aesthetic Properties):
 - Foaming Agents <0.5 mg/L in drinking water
 - Do not regulate foaming agents in source water
 - Guideline for State Regulations Only (Not Federally Enforceable)

Federal Environmental Regulations Results (Continued)

Clean Water Act (CWA)

- Installations Require Discharge Permits
 - Storm Water
 - Treated Sewage from Installation Wastewater Treatment Plant
 - Raw Sewage to Public Wastewater Treatment Plant (Locale Specific)
- Regulates Wastewater that:
 - Foam
 - Remove Oxygen From Water
 - Disrupt Wastewater Treatment Plants, etc.
- AFFF
 - Persistent Foam
 - Removes High Amounts of Oxygen From Water (High BOD and/or COD)
 - Untreated, Undiluted AFFF Will Disrupt Wastewater Treatment Plant
 - (Even Diluted AFFF Can Disrupt Wastewater Treatment Plant) SDWA

Codes and Standards Survey State/Local Environmental Regulations

- State Regulations Can be More Strict Than Federal
 - No Specific Instances Found for AFFF
 - Storm Sewer Regulations Emphasized
- Nothing Additional in County and City Regulations
- Representative Jurisdictions
 - Telephone Surveys
 - Focused on Jurisdictions In:
 - Virginia
 - Hawaii
 - Florida
 - California
- Local Anecdotal AFFF 'Problems'
 - Sewage Treatment Plants Becoming 'Bubble Baths'
 - Pump Stations 'Burned-up'
 - Storm Sewer Overflowing With Foam

State/Local Environmental Regulations (Continued)

- Foaming the Greatest Concern
- Perception:
 - Foam Is Highly Toxic to Everything
 - No Concentration is Okay for a WWTP
- Results
 - Local Jurisdictions CAN and DO Regulate AFFF by Name
 - Have Water Discharge Permit Authority
 - Local Waste Water Treatment Plants Often Ban AFFF
 - Based on Direct Experience with a Disruption
 - High Oxygen Demand
 - Foaming

Environmental Consequences

- Media Considered
 - Air
 - Groundwater
 - Soil
 - Surface Water
 - Via storm water
 - Via wastewater treatment plant

Both Constituent Characteristics and AFFF Solution Properties

Environmental Consequences Media: Air

HAPS: Butyl Carbitol, Ethylene Glycol

Low Migration Potential (All Constituents)

- Highly Soluble in Water
 - Tends to stay with liquid water
 - Not very volatile
- If Volatilized, Half-lives in Air 4 Hr 3.5 Days

Environmental Consequences Media: Groundwater

- Consequence Varies Depending on Subsurface Conditions
- Fluorosurfactants: Not Mobile
- All Other Constituents:
 - Highly Soluble, Highly Mobile
 - Degrades Rapidly in Soil
 - 30% Degradation Over 24 Hour Period
- Drinking Water Wells 'Under the Influence of Surface Water' Could Receive Undegraded AFFF Constituents

Environmental Consequences Media: Soil

Consequence varies depending on soil type
Fluorosurfactants and break-down products

- Persistent in soil
- No quantified environmental impact
- EPA will discuss further tomorrow
- Other constituents highly mobile in water, will not adsorb to soil

Environmental Consequences Media: Surface Water Via Storm Water

- Foaming:
 - Aesthetic Concern
- Oxygen Demand
 - Robs Oxygen from Water
 - Usually near water's surface
- Aquatic Toxicity
 - Considered 'Practically Nontoxic' by the US Fish and Wildlife Service.
 - Lowest toxicity value in 40 CFR 300
 - LC50 > 1000 mg/L in concentrate
 - ~160 mg/L in most sensitive species
 - Much Lower Toxicity in Firefighting Strength
 - Anecdotal Reports of Higher Toxicity

- Surface Water May influence Groundwater
- 'Environmental' Threat
 - Depends on Sensitivity of Receiving Water: Worst Cases
 - Kaneohe Bay, HI Risk Analysis -"Potential for significant ecological damage ... relatively small"
 - Wetlands
 - Waterfowl-Fluorosurfactant Interaction being studied in St. Johns River Basin in Florida.

Environmental Consequences

Media: Surface Water Via Direct Discharge to WWTP

- Disrupts plant through:
 - Foaming
 - Disrupts mechanical devices
 - Causes 'sludge bulking'
 - Causes Froth
 - High Oxygen Demand
 - Removes all oxygen killing microorganisms used to treat sewage
 - Causes 'sludge bulking'
 - Aquatic Toxicity
 - Of lower concern than Foaming and Oxygen Demand
 - May cause 'sloughing' of organisms from certain processes

Disrupted plant:

- Contaminates receiving water
- Could cause fish kill
- Makes water unfit for:
 - Drinking
 - Recreation, etc.

Representative Dilution Factors for Treatment of MAX MILSPEC AFFF at a WWTP

H

Summary

- Under Context of Current Laws/Regulations, AFFF and all other Foams Regulated Based On:
 - Properties
 - BOD, COD, Foaming and Aquatic Toxicity
 - "Listed" Chemical Constituents
 - Butyl Carbitol, Surfactants, Ethylene Glycol, Urea, etc.
 - Water Issues are Most Prevalent
 - Foaming is Major Issue for WWTP
- Potential Environmental Impacts Generally Low
 - Impacts Consequence of
 - Foaming
 - O₂ Demand
 - Aquatic Toxicity
 - Upset of WWTP Creates Greatest Impact

